
Sifting through the ASHes
Performance Analysis with the Oracle 10g

Active Session History
Graham Wood

Graham.Wood@oracle.com

Oracle Corporation

Agenda
Introduction
What is ASH
Querying ASH data
Comparison of ASH and Statspack/AWR
Comparison of ASH and SQL trace/tkprof
EM use of ASH data
Conclusions

Oracle Statistics

Instance level statistics (AWR, Statspack)
– Too little detail ⇒ Stop short of complete diagnosis

– Can be collected automatically
Trace level statistics (sql_trace)

– Too much detail ⇒ Intrusive. Hard to see big-picture

– Must be enabled manually
– Need prior knowledge that problem exists

Oracle Statistics

Solution: Active Session History
– Sample session activity in the system including:

– Session id
– Wait event
– SQL id
– Object

– Always on for first fault analysis
– Just right!

Active Session History
Sampled, detailed,non-intrusive activity data
Part of Oracle 10g
On by default
Licensed as part of the Diagnostic pack

Active Session History (ASH)
Samples ‘Active’ sessions every second

– Like doing “select * from v$session_wait” w/o SQL
Writes into ASH buffer in SGA memory

– 2MB per CPU, ≤ 5% shared_pool, 2% sga_target

‘Active’ == Non-idle sessions
– Waiting on non-idle event or on CPU

Data volume based on activity
– 10,000 sessions => 200 active sessions
– Design goal: one hour activity held in memory

Active Session History (ASH)
SQL> select * from v$sgastat where name like 'ASH buffers';

POOL NAME BYTES
------------ -------------------------- ----------
shared pool ASH buffers 65011712

SQL> select min(sample_time), max(sample_time) from
v$active_session_history;

MIN(SAMPLE_TIME)
--
MAX(SAMPLE_TIME)
--
20-FEB-05 10.31.38.615 PM
21-FEB-05 02.39.28.950 AM

Active Session History (ASH)

DB Time

Query for
Melanie Craft

Novels

Browse and
Read

Reviews

Add
item to

cart

Checkout
using

‘one-click’

Active Session History (ASH)

DB Time

Query for
Melanie Craft

Novels

Browse and
Read

Reviews

Add
item to

cart

Checkout
using

‘one-click’

WAITING

State
db file
sequential readqa324jffritcf2137:38:26

EventSQL IDModule

Book by author

SIDTime

CPUaferv5desfzs5Get review id2137:42:35

WAITING log file syncabngldf95f4deOne click2137:52:33

7:50:59 213 Add to cart hk32pekfcbdfr WAITING buffer busy wait

ASH: On disk

Captured as part of AWR snapshots
– DBA_HIST_ACTIVE_SESS_HISTORY

Takes samples from in-memory ASH
– 10 second samples

On-demand flush if required
– Whenever circular buffer is 66% full
– No missed data

Seven days history by default
– Table is partitioned for easy purging

Active Session History

Every
1 hour

or
out-of-space

AWR

Circular buffer
in SGA

(2MB per CPU)

DBA_HIST_ACTIVE_SESS_HISTORYV$ACTIVE_SESSION_HISTORY

MMON Lite
(MMNL)

Session
state

objects

V$SESSION
V$SESSION_WAIT

WRH$_ACTIVE_SESSION_HISTORY

ASH: Challenges – Space

Memory Usage
– Module, Action, Client_id (~50%)
– Variable length rows

Disk Usage
– Write 1 out of every 10 samples

Log generation
– Direct-path INSERTS

Active Session History

Every
1 hour

or
out-of-space

AWR

Circular buffer
in SGA

(2MB per CPU)

DBA_HIST_ACTIVE_SESS_HISTORYV$ACTIVE_SESSION_HISTORY

Session
state

objects

MMON Lite
(MMNL)

V$SESSION
V$SESSION_WAIT

Variable
length rows

Direct-path
INSERTS

Write
1 out of 10

samples

ASH: Challenges – Time

Reader-Writer Concurrency
– No Consistent-Read requirement
– 1 Writer – Multiple Readers
– Readers go unlatched

Indexed on time
– Both V$ view and DBA_HIST view

Active Session History

Readers go
unlatched

Writer goes
one direction

Every
1 hour

or
out-of-space

AWR

Circular buffer
in SGA

(2MB per CPU)

DBA_HIST_ACTIVE_SESS_HISTORYV$ACTIVE_SESSION_HISTORY

MMON Lite
(MMNL)

Session
state

objects

V$SESSION
V$SESSION_WAIT

Readers go the
opposite way

Indexed
on time

Indexed
on time

What you can do with it
STATISTICAL analysis of where time was
being spent by many different dimension.

– What events were taking most time?
– What was a session doing?
– What does a SQL statement wait for?

Can decide on dimension after the event!

ASH: Dimensions
Session
Waits

– Event, P1, P2, P3
SQL

– Sql_id, Opcode,Plan_hash
Objects

– Object#, File#, Block#
Application

– Program, Module, Action, Client_id, Service
Combinations of the above, CUBEs, ROLLUPs, …

Accessing ASH data
Dump to trace file
V$ACTIVE_SESSION_HISTORY
DBA_HIST_ACTIVE_SESS_HISTORY
ASH report
EM Diagnostic Pack

Dumping ASH to file
>oradebug setmypid
>oradebug dump ashdump 10

>alter session set events 'immediate
trace name ashdump level 10';

10 ==> minutes of history you want to dump
Generated file can be loaded into database
using supplied control file
rdbms/demo/ashldr.ctl

V$ACTIVE_SESSION_HISTORY
Gives most recent data first
Control C or ‘set pause on’ is your friend
Simpleash.sql

ASH: desc v$active_session_history
Name Null? Type
--- -------- ----------------------------
SAMPLE_ID NUMBER
SAMPLE_TIME TIMESTAMP(3)
SESSION_ID NUMBER
SESSION_SERIAL# NUMBER
USER_ID NUMBER
SESSION_TYPE VARCHAR2(10)
SESSION_STATE VARCHAR2(7)
QC_SESSION_ID NUMBER
QC_INSTANCE_ID NUMBER
EVENT VARCHAR2(64)
EVENT_ID NUMBER
EVENT# NUMBER
SEQ# NUMBER
P1 NUMBER
P2 NUMBER
P3 NUMBER
SQL_ID VARCHAR2(13)
SQL_CHILD_NUMBER NUMBER
SQL_PLAN_HASH_VALUE NUMBER
SQL_OPCODE NUMBER
CURRENT_OBJ# NUMBER
CURRENT_FILE# NUMBER
CURRENT_BLOCK# NUMBER
PROGRAM VARCHAR2(48)
MODULE VARCHAR2(48)
ACTION VARCHAR2(32)
CLIENT_ID VARCHAR2(64)
SERVICE_HASH NUMBER
WAIT_TIME NUMBER
TIME_WAITED NUMBER

Session

Wait

SQL

Object

Application

How to Sift the ASHes
“group by”s and “count(*)”s

– Proxy for non-idle elapsed time
– Proportions of actual time spent

Can analyze any time slice
More samples ⇒ More accurate results

ASH: Top SQL
select sql_id, count(*),

round(count(*)
/sum(count(*)) over (), 2) pctload

from v$active_session_history
where sample_time > sysdate - 1/24/60
and session_type <> ‘BACKGROUND’

group by sql_id
order by count(*) desc;

Returns most active SQL in the past minute

ASH: Top SQL
SQL_ID COUNT(*) PCTLOAD
------------- ---------- ----------
25wtt4ycbtkyz 456 32.95
7umwqvcy7tusf 123 8.89
01vunx6d35khz 119 8.6
bdyq2uph07cmp 102 7.37
9y4f9n5hr23yr 73 5.27
0bnc9a5kkf4wn 57 4.12
bv1gns48hgxpk 57 4.12
gq82c5361nxbq 57 4.12
djzkbxr7cm122 57 4.12
b2bakhq4w7rbv 57 4.12
8jydryyvdwcqp 57 4.12
69x6zf5myht7s 57 4.12
2ccawhzy8b7ua 57 4.12
4z5z7xb2g04m6 55 3.97

ASH: Top IO SQL
select ash.sql_id, count(*)
from v$active_session_history ash,

v$event_name evt
where ash.sample_time > sysdate – 1/24/60
and ash.session_state = ‘WAITING’
and ash.event_id = evt.event_id
and evt.wait_class = ‘User I/O’

group by sql_id
order by count(*) desc;

Returns SQL spending most time doing I/Os
Similarly, can do Top Sessions, Top Files, Top Objects

DBA_HIST_ACTIVE_SESS_HISTORY

Similar to in-memory ASH but adds
– DB_ID
– INSTANCE_NUMBER
– SNAP_ID

One sample every 10 seconds

ASH data gotcha’s
Samples are a proxy for time not for counts
Times are sampled times, not statistically
valid for avg, min, max
Beware of Obj#, File#, Block# (not cleared)
Temp file numbers
Wait time vs Time waited
SQL*Forms RPC bug# 4137362
Time period of data available in
V$ACTIVE_SESSION_HISTORY is variable

ASH: Bad SQL
select
e.event,
e.total_waits - nvl(b.total_waits,0) total_waits,
e.time_waited - nvl(b.time_waited,0) time_waited
from
v$active_session_history b,
v$active_session_history e,
stats$snapshot sn
Where snap_time > sysdate-&1
And e.event not like '%timer'
And e.event not like '%message%'
And e.event not like '%slave wait%'
And e.snap_id = sn.snap_id
And b.snap_id = e.snap_id-1
And b.event = e.event
And e.total_timeouts > 100
And (e.total_waits - b.total_waits > 100

or e.time_waited - b.time_waited > 100)
;

ASH: Bad SQL
select sum(a.time_waited) total_time
from v$active_session_history a,

v$event_name b
where a.event# = b.event# and

sample_time > '21-NOV-04 12:00:00 AM' and
sample_time < '21-NOV-04 05:00:00 AM' and
b.wait_class = 'User I/O'

ASH: Bad SQL
select sum(a.time_waited) total_time
from v$active_session_history a,

v$event_name b
where a.event# = b.event# and

sample_time > '21-NOV-04 12:00:00 AM' and
sample_time < '21-NOV-04 05:00:00 AM' and
b.wait_class = 'User I/O'

Total time spent waiting on IO?

ASH: Bad SQL
select sum(a.time_waited) total_time
from v$active_session_history a,

v$event_name b
where a.event# = b.event# and

sample_time > '21-NOV-04 12:00:00 AM' and
sample_time < '21-NOV-04 05:00:00 AM' and
b.wait_class = 'User I/O'

Total time spent waiting on IO?
Totals sampled IO times

ASH: Bad SQL
select sum(a.time_waited) total_time
from v$active_session_history a,

v$event_name b
where a.event# = b.event# and

sample_time > '21-NOV-04 12:00:00 AM' and
sample_time < '21-NOV-04 05:00:00 AM' and
b.wait_class = 'User I/O'

Total time spent waiting on IO?
Totals sampled IO times
Assumes that 5 hours history in memory

ASH: Bad SQL
select sess_id,username,program,wait_event,sess_time,

round(100*(sess_time/total_time),2) pct_time_waited
from
(select a.session_id sess_id,
decode(session_type,'background',session_type,c.username) username,

a.program program,
b.name wait_event,
sum(a.time_waited) sess_time

from sys.v_$active_session_history a,
sys.v_$event_name b,
sys.dba_users c

where a.event# = b.event# and
a.user_id = c.user_id and
sample_time > '21-NOV-04 12:00:00 AM' and
sample_time < '21-NOV-04 05:00:00 AM' and
b.wait_class = 'User I/O'

group by a.session_id,
decode(session_type,'background',session_type,c.username),
a.program,
b.name),

(select sum(a.time_waited) total_time
f $ ti i hi t

ASH: WAIT_TIME vs TIME_WAITED

WAIT_TIME
– Same as V$SESSION_WAIT
– 0 ⇒ ‘WAITING’

any other value ⇒ ‘ON CPU’
TIME_WAITED

– Actual time waited for that event
– Updated later upon event completion

ASH: TIME_WAITED

User
Session

(SID = 3)

Remember
actual

time waited

Sample 1 Sample 2

Time

1

Sample
0

Wait_time
WAITING

State
0db file scattered read3

Time_waitedEventSession
After Sample 1

1

Sample
0

Wait_time
WAITING

State
5msdb file scattered read3

Time_waitedEventSession
After Sample 2, Sample 1 is updated

ASH vs AWR/Statpack

NoYesSampled data
YesYesTime based analysis

NoYesIndividual Wait event data
NoYesDetailed session level data
NoYesAnalyze any time period
YesNoCounts/occurrence data
YesYesTime based data
YesYesInstance wide data
AWRASH

ASH vs AWR
Top 5 Timed Events
~~~~~~~~~~~~~~~~~~                                        % Total
Event                                 Waits    Time (s)   DB Time     Wait Class
------------------------------ ------------ ----------- --------- --------------
log file sync                       990,495     233,649     43.79         Commit
latch: library cache                642,247     157,188     29.46    Concurrency
latch: cache buffers chains         133,136      39,747      7.45    Concurrency
latch: library cache pin             84,638      22,998      4.31    Concurrency
latch free                           61,709      20,079      3.76          Other

Top Foreground Events
~~~~~~~~~~~~~~~~~~~~~

log file sync 46.01% Commit
latch: library cache 23.13% Concurrency

latch: cache buffers chains 6.50% Concurrency
latch free 4.63% Other

latch: library cache pin 2.99% Concurrency

D E M O N S T R A T I O N

ASH Report

ASH vs SQLtrace/tkprof

YesYesDetailed session level data
YesYesIndividual Wait event data
YesNoComplete trace of operations
NoYesAlways on
YesNo Bind variables available

YesNoCounts/occurrence data
YesYesTime based data
YesNoParse/Exec/Fetch breakdown

SQLtraceASH

D E M O N S T R A T I O N

ASH Session Report

D E M O N S T R A T I O N

EM Diagnostic Pack

ASH: Top SQL from EM

Wait Class + ASH: I/O Drill-down from EM

jmillistake3.png

ASH: What new in 10gR2

Blocking sid (maybe in 10.1.0.5)
XID

Conclusion
ASH data always available
Allows instance wide performance analysis
Allows detailed session level performance
analysis
But it is sampled data, so use statistical
analysis techniques

Q U E S T I O N SQ U E S T I O N S
A N S W E R SA N S W E R S

	Sifting through the ASHes Performance Analysis with the Oracle 10g Active Session History
	Agenda
	Oracle Statistics
	Oracle Statistics
	Active Session History
	Active Session History (ASH)
	Active Session History (ASH)
	ASH: On disk
	Active Session History
	ASH: Challenges – Space
	Active Session History
	ASH: Challenges – Time
	Active Session History
	What you can do with it
	ASH: Dimensions
	Accessing ASH data
	Dumping ASH to file
	V$ACTIVE_SESSION_HISTORY
	ASH: desc v$active_session_history
	How to Sift the ASHes
	ASH: Top SQL
	ASH: Top SQL
	ASH: Top IO SQL
	DBA_HIST_ACTIVE_SESS_HISTORY
	ASH data gotcha’s
	ASH: Bad SQL
	ASH: Bad SQL
	ASH: Bad SQL
	ASH: Bad SQL
	ASH: Bad SQL
	ASH: Bad SQL
	ASH: WAIT_TIME vs TIME_WAITED
	ASH: TIME_WAITED
	ASH vs AWR/Statpack
	ASH vs AWR
	ASH vs SQLtrace/tkprof
	ASH: Top SQL from EM
	Wait Class + ASH: I/O Drill-down from EM
	
	ASH: What new in 10gR2

