

The SQL Model Clause of
Oracle Database 10g

An Oracle White Paper
August 2003

SQL Model Clause Page 2

The SQL Model Clause of
Oracle Database 10g

Executive Overview.. 3
Introduction... 3

Concepts.. 4
Technical details ... 6

Basic Syntax.. 6
Sample Data .. 6
First Model Clause Example... 7

Referring to cells and values... 8
Positional Cell Reference – Single cell access and upserts 8
Symbolic Cell Reference: Multi-cell access and updates 9
Positional and Symbolic Cell References in a single query............ 10
Multi-Cell References on the Right Side of a Formula 11
CV() Function: Use left-side values in right side calculations 12

Using CV() in expressions for inter-row calculations 13
Wild Card with "ANY" keyword.. 14

FOR Loops – a concise way to specify new cells 14
FOR Loops which range over a value sequence 15

Other cell-handling features.. 16
Order of evaluation of Formulas... 16
NULL Measures and Missing Cells.. 16

Reference Models ... 16
Iterative Models .. 17
Conclusion .. 17
Appendix: Model Clause Explain Plans .. 18

Example Plan using ORDERED processing: 18
Example plan using ACYCLIC FAST processing: 19

SQL Model Clause Page 3

The SQL Model Clause of
Oracle Database 10g

EXECUTIVE OVERVIEW
Complex calculations can be challenging in SQL, specially when they involve
inter-row references. Such computations will often demand elaborate SQL
Joins and Union statements, code that is difficult to develop, maintain and
execute efficiently. Oracle Database 10g introduces an innovative approach to
complex SQL calculations: the SQL Model clause.

An extension to SQL's Select statement, the Model clause enables developers to
treat relational data as multidimensional arrays and define formulas on the
arrays. It offers a concise, easy to read syntax and the functionality needed to
handle demanding calculations. The Model clause resolves formula
dependencies automatically, supporting large sets of interlinked formulas in
sophisticated applications. In addition, Model clause processing employs
advanced optimization techniques and data structures, for very high
performance. The expressive power and ease of use of the Model clause,
combined with the scalability and manageability of Oracle, provide a major
advance for database applications.

INTRODUCTION
Many database applications, both in business and technical fields, require
calculations which are difficult to build in SQL. Market share calculations
involving different levels of a product or geography hierarchy or customized
aggregations may need complex self-joins and union operations. Time series
analyses and iterative calculations such as simultaneous equations can require
moving data outside the database and into external calculation engines.
Financial models like budgets and sales forecasts, with many logically
interdependent formulas are specially challenging.

Although the limitations of SQL entail significant application development and
maintenance burdens, there is a bigger issue to consider. When data is extracted
from the database for external processing, administrative workload increases and
manageability decreases. Picture financial projections based on extracted data
and performed on PC spreadsheets. When many end users run their own copy of
a standardized projection spreadsheet, all the machines must be updated
whenever a change is made to the formulas. To fail in even one update means

SQL Model Clause Page 4

incorrect financial calculations, a major risk in today's business environment.
Even when results are based on consistent formulas, the output must be
consolidated, a complex task demanding timely network access to many PC's.
Reliable access to many PC's becomes ever more challenging as staffs shift to
laptop computers that may not be connected to the network at all. Clearly, there
would be major business advantages if complex calculations could be
centralized within the database.

Oracle Database 10g addresses these needs with the SQL Model clause, a
powerful new extension to the SQL SELECT statement. The Model clause
simplifies and centralizes calculations for all types of applications. With the
SQL Model clause, you can view query results in the form of multidimensional
arrays and then apply formulas to calculate new array values. The formulas can
be sophisticated interdependent calculations with inter-row and inter-array
references. Applications built with the Model clause can replace PC
spreadsheets and other external computation engines, providing more robust
and efficient solutions. Integrating advanced calculations into the database
significantly enhances performance, scalability and manageability compared to
external computations:

• Performance – Model clause processing eliminates the need for many SQL
join and union operations. It maximizes performance using advanced
algorithms and data structures. At the most basic level, with Model clause
data avoids the round trip required for external processing: copying data
into separate applications, processing the data and then loading the results
into the database.

• Scalability – Oracle's parallel query features support enterprise level
scalability unmatched by external calculation tools such as PC
spreadsheets. The Model clause leverages Oracle parallelism, efficiently
using all system resources made available to it.

• Manageability – When computations are centralized close to the data, the
inconsistency and poor security of calculations scattered across
computational islands disappears. Also, data consolidation is simplified
when applications share a common relational environment rather than a
mix of calculation engines with incompatible data structures.

Concepts
The Model clause defines a multidimensional array by mapping the columns of
a query into three groups: partitioning, dimension, and measure columns. These
elements perform the following tasks:

• Partitions define logical blocks of the result set in a way similar to the
partitions of the analytical functions (described in Oracle's Data
Warehousing Guide). Each partition is viewed by the formulas as an
independent array.

SQL Model Clause Page 5

• Dimensions identify each measure cell within a partition. These columns
are identifying characteristics such as date, region and product name.

• Measures are analogous to the measures of a fact table in a star schema.
They typically contain numeric values such as sales units or cost. Each
cell is accessed within its partition by specifying its full combination of
dimensions.

To create formulas on these multidimensional arrays, you define computation
rules expressed in terms of the dimension values. The rules are flexible and
concise, and can use wild cards and FOR loops for maximum expressiveness.
Calculations based on the Model clause improve on traditional MODEL
calculations by integrating their analytical functions into the database,
improving readability with symbolic referencing, and providing scalability and
much better manageability.

The figure below gives a conceptual overview of Model using a hypothetical
sales table. The table has columns for country, product, year and sales amount.
The figure has three parts. The top segment shows the concept of dividing the
table into partitioning, dimension and measure columns. The middle segment
shows two rules that calculate the value of Prod1 and Prod2 for the year 2002.
Finally, the third part shows the output of a query applying the rules to a table
with hypothetical data. The unshaded output of is data retrieved from the
database, while the shaded output shows rows calculated from rules. Note that
the rules are applied within each partition.

SQL Model Clause Page 6

Note that the Model clause does not update existing data in tables, nor does it
insert new data into tables: to change values in a table, the Model results are
supplied to an INSERT or UPDATE or MERGE statement.

TECHNICAL DETAILS
The prior section provided an overview of the SQL Model clause. However, a
solid understanding of the feature requires detailed examples. The rest of this
paper presents a step-by-step presentation of essential Model concepts and
keywords using examples. Not every feature is illustrated with an example, but
we do provide at least a brief description of all major elements. For ease of
understanding, all examples can be run with the sample data that ships with
Oracle Database 10g. We use the sample schema SH, which is a star schema of
the kind commonly used in business intelligence applications. SH has a fact
table holding sales history for a consumer electronics vendor with international
sales.

Basic Syntax
Here are the elements of the Model clause syntax which are discussed in this
paper. While there are some additional syntax items, the set discussed here
represents the core functionality. Note that the Model clause is processed after
all other clauses of a SELECT statement except the final ORDER BY.
<prior clauses of SELECT statement>
MODEL [main]
 [reference models]
 [PARTITION BY (<cols>)]
 DIMENSION BY (<cols>)
 MEASURES (<cols>)
 [IGNORE NAV] | [KEEP NAV]
 [RULES
 [UPSERT | UPDATE]
 [AUTOMATIC ORDER | SEQUENTIAL ORDER]
 [ITERATE (n) [UNTIL <condition>]]
 (<cell_assignment> = <expression> ...)

Sample Data
To keep our examples concise, we will create a view using the Sales History
(SH) schema of the sample schema set provided with Oracle10g. The view
sales_view provides annual sums for product sales, in dollars and units, by
country, aggregated across all channels. The view is built from a 1 million row
fact table and defined as follows:

SQL Model Clause Page 7

CREATE VIEW sales_view AS
SELECT country_name country, prod_name prod,
 calendar_year year,
 SUM(amount_sold) sale, COUNT(amount_sold) cnt
FROM sales, times, customers, countries, products
WHERE sales.time_id = times.time_id AND
 sales.prod_id = products.prod_id AND
 sales.cust_id = customers.cust_id AND
 customers.country_id = countries.country_id
GROUP BY country_name, prod_name, calendar_year;

If you wish to run the examples on your Oracle system with minimal execution
time, you can create a materialized view of this statement. Oracle's summary
management feature will automatically rewrite the examples to take advantage
of the materialized view.

First Model Clause Example
As an initial example of Model, consider the following statement. It calculates
the sales values for two products and defines sales for a new product based on
the other two products.

SELECT SUBSTR(country,1,20) country, SUBSTR(prod,1,15) prod,
year, sales
FROM sales_view
WHERE country IN ('Italy','Japan')
MODEL RETURN UPDATED ROWS
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale sales)
 RULES (
 sales['Bounce', 2002] = sales['Bounce', 2001] +
 sales['Bounce', 2000],
 sales['Y Box', 2002] = sales['Y Box', 2001],
 sales['2_Products', 2002] = sales['Bounce', 2002] +
sales['Y Box', 2002])
ORDER BY country, prod, year;

The results are:

COUNTRY PROD YEAR SALES
-------------------- --------------- ---------- ----------
Italy 2_Products 2002 92613.16
Italy Bounce 2002 9299.08
Italy Y Box 2002 83314.08
Japan 2_Products 2002 103816.6
Japan Bounce 2002 11631.13
Japan Y Box 2002 92185.47

This statement partitions data by country, so the formulas are applied to data of
one country at a time. Our sales fact data ends with 2001, so any rules defining
values for 2002 or later will insert new cells. The first rule defines the sales of a
video games called "Bounce" in 2002 as the sum of its sales in 2000 and 2001.
The second rule defines the sales for Y Box in 2002 to be the same value they

SQL Model Clause Page 8

were for 2001. The third rule defines a product called "2_Products," which is
simply the sum of the Bounce and Y Box values for 2002. Since the values for
2_Products are derived from the results of the two prior formulas, the rules for
Bounce and Y Box must be executed before the 2_Products rule.

Note the following characteristics of the example above:

• The "RETURN UPDATED ROWS" clause following the keyword
MODEL limits the results returned to just those rows that were created or
updated in this query. Using this clause is a convenient way to limit result
sets to just the newly calculated values. We will use the RETURN
UPDATED ROWS clause throughout our examples.

• The keyword "RULES," shown in all our examples at the start of the
formulas, is optional, but we include it for easier reading.

• Likewise, many of our examples do not require ORDER BY on the
Country column, but we include the specification for convenience in case
readers want to modify the examples and use multiple countries.

REFERRING TO CELLS AND VALUES
This section examines the techniques for referencing cells and values in a SQL
Model. The material on cell references is essential to understanding the power
of the SQL Model clause.

Positional Cell Reference – Single cell access and upserts
What if we want to update the existing sales value for the product Bounce in the
year 2000, in Italy, and set it to 10? We could do it with a query like this, which
updates the existing cell for the value:

SELECT SUBSTR(country,1,20) country, SUBSTR(prod,1,15) prod,
 year, sales
FROM sales_view
WHERE country='Italy'
MODEL RETURN UPDATED ROWS
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale sales)
 RULES (
 sales['Bounce', 2000] = 10)
ORDER BY country, prod, year;

COUNTRY PROD YEAR SALES
-------------------- --------------- ---------- ----------
Italy Bounce 2000 10

The formula in the query above uses "positional cell reference." The value for
the cell reference is matched to the appropriate dimension based on its position

SQL Model Clause Page 9

in the expression. The DIMENSION BY clause of the model determines the
position assigned to each dimension: in this case, the first position is product
("prod") and the second position is year.

What if we want to create a forecast value of the sales for the product Bounce in
the year 2005, in Italy, and set it to 20? We could do it with a query like this:

SELECT SUBSTR(country,1,20) country, SUBSTR(prod,1,15) prod,
 year, sales
FROM sales_view
WHERE country='Italy'
MODEL RETURN UPDATED ROWS
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale sales)
 RULES (
 sales['Bounce', 2005] = 20)
ORDER BY country, prod, year;

COUNTRY PROD YEAR SALES
-------------------- --------------- ---------- ----------
Italy Bounce 2005 20

The formula in the query above sets the year value to 2005 and thus creates a
new cell in the array.

NOTE: If we want to create new cells, such as sales projections for future years,
we must use positional references or FOR loops (discussed later in this paper).
That is, positional reference permits both updates and inserts into the array. This
is called the "upsert" process.

Symbolic Cell Reference: Multi-cell access and updates
What if we want to update the sales for the product Bounce in all years after
1999 where we already have values recorded? Again, we will change values
for Italy and set them to 10. We could do it with a query like this:
SELECT SUBSTR(country,1,20) country, SUBSTR(prod,1,15) prod,
 year, sales
FROM sales_view
WHERE country='Italy'
MODEL RETURN UPDATED ROWS
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale sales)
 RULES (
 sales[prod='Bounce', year>1999] = 10)
ORDER BY country, prod, year;

SQL Model Clause Page 10

COUNTRY PROD YEAR SALES
-------------------- --------------- ---------- ----------
Italy Bounce 2000 10
Italy Bounce 2001 10

The formula in the query above uses "symbolic cell reference." With symbolic
cell references, the standard SQL conditions are used to determine the cells
which are part of a formula. You can use conditions such as <,>, IN, and
BETWEEN. In this example the formula applies to any cell which has product
value equal to Bounce and a year value greater than 1999. The example shows
how a single formula can access multiple cells.

NOTE: Symbolic references are very powerful, but they are solely for updating
existing cells: they cannot create new cells such as sales projections in future
years. If a cell reference uses symbolic notation in any of its dimensions, then
its formula will perform only updates. Later we will discuss FOR loops in the
Model clause, which provide a concise technique for creating multiple cells from
a single formula.

Positional and Symbolic Cell References in a single query
What if we want a single query to update the sales for several products in several
years for multiple countries, and we also want it to insert new cells? Placing
several formulas into one query is more efficient than running multiple single-
formula queries, since it reduces the number of times we need to access data. It
also allows for more concise SQL, supporting higher developer productivity.
Here is an example that updates two existing products and inserts a new product.
To explain the notation, the query has three in-line comments.

SELECT SUBSTR(country,1,20) country, SUBSTR(prod,1,15) prod,
 year, sales
FROM sales_view WHERE country IN ('Italy','Japan')
MODEL RETURN UPDATED ROWS
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale sales)
 RULES (
 sales['Bounce', 2002] = sales['Bounce', year = 2001] ,
 --positional notation: can insert new cell
 sales['Y Box', year>2000] = sales['Y Box', 1999],
 --symbolic notation: can update existing cell
 sales['2_Products', 2005] = sales['Bounce', 2001] +
 sales['Y Box', 2000])
 --positional notation: permits creation of new cell
 --for new product
 ORDER BY country, prod, year;

SQL Model Clause Page 11

COUNTRY PROD YEAR SALES
-------------------- --------------- ---------- ----------
Italy 2_Products 2005 34579.63
Italy Bounce 2002 4928.65
Italy Y Box 2001 15177.7
Japan 2_Products 2005 52563.55
Japan Bounce 2002 6443.77
Japan Y Box 2001 22297.76

Since our example data has no values beyond the year 2001, any rule
involving the year 2002 or later requires insertion of a new cell. The same
applies to any new product name we define here. In the third formula we define
a new product '2_Products' for 2005, so a cell will be inserted for it. The first
rule, for Bounce in 2002, inserts new cells since it is positional notation. The
second rule, for Y Box, uses symbolic notation, but since there are already
values for 'Y Box' in the year 2001, it updates those values. The third rule, for
'2_Products' in 2005, is positional, so it can insert new cells, and we see them in
the output.

Multi-Cell References on the Right Side of a Formula
The earlier examples had multi-cell references only on the left side of the
formulas. What if we want to refer to multiple cells on the right side of a
formula? Multi-cell references can be used on the right side of formulas in
which case an aggregate function needs to be applied on them to convert them
to a single value. All existing aggregate functions including OLAP aggregates
(inverse distribution functions, hypothetical rank and distribution functions etc.)
and statistical aggregates, and user-defined aggregate functions can be used.

How can we forecast the sales of Bounce in Italy for the year 2005 to be 100
more than the maximum sales in the period 1999 to 2001?

SELECT SUBSTR(country,1,20) country, SUBSTR(prod,1,15) prod,
 year, sales
FROM sales_view
WHERE country='Italy'
MODEL RETURN UPDATED ROWS
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale sales)
 RULES (
 sales['Bounce', 2005] = 100 + MAX(sales)['Bounce',
 year BETWEEN 1998 AND 2002])
ORDER BY country, prod, year;

COUNTRY PROD YEAR SALES
-------------------- --------------- ---------- ----------
Italy Bounce 2005 5028.65

In the query above we use a BETWEEN condition to specify multiple cells on
the right side of the formula, and these are aggregated to a single value with the
MAX() function.

SQL Model Clause Page 12

NOTE: Aggregate functions can appear only on the right side of formulas.
Arguments used in the aggregate function can be constants, bind variables,
measures of the MODEL clause, or expressions involving them.

CV() Function: Use left-side values in right side calculations
The CV() function is a very powerful tool used on the right side of formulas to
copy left side specifications that refer to multiple cells. This allows for very
compact and flexible multi-cell formulas. The CV() function is equivalent to a
SQL join operation, but far more compact and readable.

What if we want to update the sales values for Bounce in Italy for multiple years,
using a formula where: each year's sales is the sum of 'Mouse Pad' sales for that
year plus 20% of the 'Y Box' sales for that year? We could do that with a query
like this:

SELECT SUBSTR(country,1,20) country, SUBSTR(prod,1,15) prod,
 year, sales
FROM sales_view
WHERE country='Italy'
MODEL RETURN UPDATED ROWS
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale sales)
 RULES (
 sales['Bounce', year BETWEEN 1995 AND 2002] =
 sales['Mouse Pad', CV(year)] +
 0.2 * sales['Y Box', CV(year)]
)
ORDER BY country, prod, year;

COUNTRY PROD YEAR SALES
-------------------- --------------- ---------- ----------
Italy Bounce 1999 7681.51
Italy Bounce 2000 9586.286
Italy Bounce 2001 21587.916

The two CV() functions used in the formula return the year dimension value of
the cell currently referenced on the left side. When the left side of the formula
above references the cell 'Bounce' and 1999, the right side expression would
resolve to:
sales['Mouse Pad', 1999] + 0.2 * sales['Y Box', 1999].

Similarly, when the left side references the cell 'Bounce' and 2000, the right side
expression we would evaluate is:
sales['Mouse Pad', 2000] + 0.2 * sales['Y Box', 2000].

CV() function takes a dimension key as its argument. It is also possible to use
CV() without any argument as in CV() which causes positional referencing.

SQL Model Clause Page 13

Therefore the formula above can be written as:
s ['Bounce', year BETWEEN 1995 AND 2002] =
 s['Mouse Pad', CV()] + 0.2 * s['Y Box', CV()]

Note that in the above results we see values for just years 1999-2001 although
the condition would have accepted any year in the range 1995 to 2002. This is
because our table has data for only the years 1999-2001. We used the wide
time range in the formula to illustrate the formula flexibility.

Using CV() in expressions for inter-row calculations

CV() allows for very flexible expressions. For instance, by subtracting from the
CV(year) value we can refer to other rows in our data set. If we have the
expression "CV(year) –2" in a cell reference, we can access data from 2 years
earlier.

What if we want to calculate the year over year percent growth in sales for
products 'Y Box', 'Bounce' and 'Mouse Pad' in Italy? Here is a query for the
task.

SELECT SUBSTR(country,1,10) country, SUBSTR(prod,1,10) prod,
year, sales, growth_pct
FROM sales_view
WHERE country='Italy'
MODEL RETURN UPDATED ROWS
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale sales, 0 growth_pct)
 RULES (
 growth_pct[prod IN ('Bounce','Y Box','Mouse Pad'),
 year BETWEEN 1998 and 2001] =
 100* (sales[CV(prod), CV(year)] –
 sales[CV(prod), CV(year) -1]) /
 sales[CV(prod), CV(year) -1])
ORDER BY country, prod, year;

COUNTRY PROD YEAR SALES GROWTH_PCT
---------- ---------- ---------- ----------- ----------
Italy Bounce 1999 2,474.78
Italy Bounce 2000 4,333.69 75.11
Italy Bounce 2001 4,846.30 11.83
Italy Mouse Pad 1998 3,055.69
Italy Mouse Pad 1999 4,663.24 52.61
Italy Mouse Pad 2000 3,662.83 -21.45
Italy Mouse Pad 2001 4,747.90 29.62
Italy Y Box 1999 15,215.16
Italy Y Box 2000 29,322.89 92.72
Italy Y Box 2001 81,207.55 176.94

It is important to note that the blank cells in the results are NULLs. The
formula results in a null if there is no value for the product two years earlier.
None of the products has a value for 1998, so in each case the 1999 growth
calculation is NULL.

SQL Model Clause Page 14

Wild Card with "ANY" keyword
A wild card operator is very useful for cell specification, and Model provides the
ANY keyword for this purpose. We can use it with the prior example to replace
the specification "year between 1998 and 2001" as shown below.
SELECT SUBSTR(country,1,10) country, SUBSTR(prod,1,10) prod,
year, sales, growth_pct
FROM sales_view
WHERE country='Italy'
MODEL RETURN UPDATED ROWS
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale sales, 0 growth_pct)
 RULES (
 growth_pct[prod IN ('Bounce','Y Box','Mouse Pad'),
 ANY] =
 100* (sales[CV(prod), CV(year)] –
 sales[CV(prod), CV(year) -1]) /
 sales[CV(prod), CV(year) -1])
ORDER BY country, prod, year;

COUNTRY PROD YEAR SALES GROWTH_PCT
---------- ---------- ---------- ----------- ----------
Italy Bounce 1999 2,474.78
Italy Bounce 2000 4,333.69 75.11
Italy Bounce 2001 4,846.30 11.83
Italy Mouse Pad 1998 3,055.69
Italy Mouse Pad 1999 4,663.24 52.61
Italy Mouse Pad 2000 3,662.83 -21.45
Italy Mouse Pad 2001 4,747.90 29.62
Italy Y Box 1999 15,215.16
Italy Y Box 2000 29,322.89 92.72
Italy Y Box 2001 81,207.55 176.94

This query gives the same results as the prior query because the full data set
ranges from 1998 to 2001, and that is the range specified in the prior query.

ANY can be used in cell references to include all dimension values including
NULLs. In symbolic reference notation, we use the phrase "IS ANY". Note
that the ANY wildcard prevents cell insertion when used with either positional
or symbolic notation.

FOR LOOPS – A CONCISE WAY TO SPECIFY NEW CELLS
The FOR construct enables a single formula to insert multiple new cells, acting
like a wild card for the left side of formulas. (Note that the FOR constructs are
allowed only on the left side of formulas.) As an example of FOR, consider the
following formulas that estimate the sales of several products for year 2005 to be
30% higher than their sales for year 2001:
RULES
(sales['Mouse Pad', 2005] = 1.3 * sales['Mouse Pad', 2001],
 sales['Bounce', 2005] = 1.3 * sales['Bounce', 2001],
 sales['Y Box', 2005] = 1.3 * sales['Y Box', 2001])

By using positional notation on the left side of the formulas, we ensure that cells
for these products in the year 2005 will be inserted if they are not already present
in the array. This technique is bulky since it requires as many formulas as there
are products. If we have to work with dozens of products, it becomes an

SQL Model Clause Page 15

unwieldy approach. With FOR we can reword this computation so it is concise
yet has exactly the same behavior?
SELECT SUBSTR(country,1,20) country, SUBSTR(prod,1,15) prod,
year, sales
FROM sales_view
WHERE country='Italy'
MODEL RETURN UPDATED ROWS
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale sales)
 RULES (
 sales[FOR prod IN ('Mouse Pad', 'Bounce', 'Y Box'),
 2005] = 1.3 * sales[CV(prod), 2001])
ORDER BY country, prod, year;

COUNTRY PROD YEAR S
-------------------- --------------- ---------- ----------
Italy Bounce 2005 6407.245
Italy Mouse Pad 2005 6402.63
Italy Y Box 2005 108308.304

If you write a specification similar to the above one, but without the FOR
keyword, only cells which already exist would be updated, and no new cells
would be inserted. In our data, that would mean no rows are returned. Here is
that query:
SELECT SUBSTR(country,1,20) country, SUBSTR(prod,1,15) prod,
year, sales
FROM sales_view
WHERE country='Italy'
MODEL RETURN UPDATED ROWS
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale sales)
 RULES (
 sales[prod IN ('Mouse Pad', 'Bounce', 'Y Box'), 2005] =
 1.3 * sales[CV(prod), 2001])
ORDER BY country, prod, year;

no rows selected

The FOR construct can be thought of as a tool to make a single formula
generate multiple formulas with positional references, thus enabling creation of
new cells (UPSERT behavior).

FOR Loops which range over a value sequence
If the dimension values needed for a cell reference come from a sequence with
regular intervals, you can use another form of the FOR construct:

 FOR dimension FROM <value1> TO <value2>

 [INCREMENT | DECREMENT] <value3>

This specification creates dimension values between value1 and value2 by
starting from value1 and incrementing (or decrementing) by value3. Using a
value range in a FOR loop enables extremely concise specification that apply to
many existing cells or create many new cells.

SQL Model Clause Page 16

OTHER CELL-HANDLING FEATURES

Order of evaluation of Formulas
By default, formulas are evaluated in the order they appear in the MODEL
clause. The keywords "SEQUENTIAL ORDER" can be specified in the
MODEL clause to make such an evaluation order explicit. To have models
calculated so that all formula dependencies are processed in correct order, use
the AUTOMATIC ORDER keywords. When a model has many formulas, it
can be more efficient to use the AUTOMATIC ORDER option than to manually
check that formulas are listed in a logically correct sequence. Using automatic
order thus enables more productive development and maintenance of models.

NULL Measures and Missing Cells
Applications using SQL Models must work with two forms of non-deterministic
values for a cell measure: cells which exist in the array but are assigned a
NULL, and cells which are not in the array at all. A cell which is referred to by
a cell reference but not found in the array is called a missing cell. MODEL
clause default treatment for NULLs is the same as all other SQL tasks, and
missing cells are treated by default as NULLs. Model also provides an alternate
treatment of such cells. The keywords "IGNORE NAV" (where NAV stands
for non-available values) can be added at the model or individual rule level.
This phrase allows formulas to treat NULLs and missing cells as 0's in numeric
calculations and as empty strings for character processing.

REFERENCE MODELS
The multi-dimensional array which has existing cells updated and new cells
added is called the Main SQL Model. Along with the Main model, a Model
clause can define one or more read-only multi-dimensional arrays, called
Reference Models. The Reference Models serve as look-up tables. Using
Reference Models, formulas can refer to arrays of different dimensionality. For
instance, a profit projection could refer to a tax reference array and a costs
reference array, where the tax is dimensioned by country and the cost is
dimensioned by product. Another example would be a currency conversion
calculation, with conversion factors treated as a reference model. Formulas
which combine reference models, the wild card "ANY," and CV() functions are
extremely flexible.

SQL Model Clause Page 17

ITERATIVE MODELS
Using ITERATE option of the MODEL clause, you can evaluate formulas
iteratively a specified number of times. We can use iterative models to calculate
models where the formulas are interdependent. That is, the feature can solve
simultaneous equations. The number of iterations is specified as an argument to
the ITERATE clause.

Optionally, you can specify an early termination condition to stop formula
evaluation before reaching the maximum iteration. This condition is specified in
the UNTIL subclause of ITERATE and is checked at the end of an iteration. In
some cases you may want the termination condition to be based on the change,
across iterations, in value of a cell. Oracle provides a mechanism to specify such
conditions by allowing you to access cell values as they existed before and after
the current iteration in the UNTIL condition. You can also access the current
iteration number for use in computations.

CONCLUSION
The challenges of specifying complex inter-row calculations in SQL have
historically been met with solutions external to the database: programs in other
languages and various types of calculation engines. With the SQL Model
clause, Oracle Database 10g opens a whole new path to solving these
challenges. The Model clause, an extension to the SELECT statement, treats
relational data as multidimensional arrays in which every cell is accessible
through a concise, flexible notation. As a result, complex SQL joins and unions
are eliminated and processing is optimized. The Model clause automatically
handles logical dependencies among formulas, further simplifying calculation
development and maintenance. Oracle's parallel query processing powers are
exploited by the Model clause, enabling enterprise level scalability.

The Model clause, combined with Oracle's analytic SQL enhancements in earlier
releases of the database, makes Oracle a robust platform for advanced
computations. Integrating advanced calculations into SQL improves
manageability and simplifies data consolidation since data no longer needs to be
extracted from the DBMS, processed externally, and have results inserted back
into Oracle. Applications across the spectrum of database applications, and
especially in Business Intelligence, will be able to leverage this important new
feature.

SQL Model Clause Page 18

APPENDIX: MODEL CLAUSE EXPLAIN PLANS
By performing an explain plan operation, you can find out the algorithm Oracle
chooses to evaluate your Model. If your model has SEQUENTIAL ORDER
formulas, then ORDERED is displayed. For AUTOMATIC ORDER Models,
Oracle plans display ACYCLIC or CYCLIC based on whether the model has
cyclic dependencies in its formulas. In addition, the plan output will have an
annotation FAST in the case of ORDERED and ACYCLIC algorithms if all left
side cell references are single cell references, and aggregates, if any, on the right
side of formulas are simple arithmetic non-distinct aggregates like SUM,
COUNT, AVG etc. Formula evaluation in this case would be highly efficient, so
it is given the label "FAST."

Example Plan using ORDERED processing:
EXPLAIN PLAN FOR
SELECT SUBSTR(country,1,10) country,
 SUBSTR(prod,1,10) product, year, sales
FROM sales_view
WHERE country IN ('Italy','Brazil')
MODEL RETURN UPDATED ROWS
 PARTITION BY (country) DIMENSION BY (prod, year)
 MEASURES (sale sales)
 RULES SEQUENTIAL ORDER
 (
 sales['Bounce', 2003] =
 AVG(sales)[ANY, 2001] * 1.24,
 sales[prod != 'Y Box', 2000] =
 sales['Y Box', 2000] * 1.25
);

The first five rows of results for this query are:

COUNTRY PRODUCT YEAR SALES
---------- ---------- ---------- ----------
Italy Bounce 2000 36653.6125
Italy Mouse Pad 2000 36653.6125
Italy Music CD-R 2000 36653.6125
Italy Fly Fishin 2000 36653.6125
Italy Deluxe Mou 2000 36653.6125

This query creates an explain plan starting with:

SELECT STATEMENT
 SQL MODEL ORDERED

Since the left side of the second formula is a multi-cell reference, Oracle will not
choose the FAST method for the query.

SQL Model Clause Page 19

Example plan using ACYCLIC FAST processing:

EXPLAIN PLAN FOR
SELECT SUBSTR(country,1,10) country,
 SUBSTR(prod,1,10) product, year, sales
FROM sales_view
WHERE country IN ('Italy','Brazil')
MODEL RETURN UPDATED ROWS
 PARTITION BY (country) DIMENSION BY (prod, year)
 MEASURES (sale sales)
 RULES AUTOMATIC ORDER
 (
 sales['Bounce', 2004] =
 sales['Y Box', 2001] * 0.25,
 sales['Mouse Pad', 2004] =
 sales['Mouse Pad', 2001] / SUM(sales)[ANY, 2001] *
 2 * sales[’All Products’, 2004],
 sales[’All Products’, 2004] = 200000
);

The query returns:

COUNTRY PRODUCT YEAR SALES
---------- ---------- ---------- ----------
Italy All Produc 2004 200000
Italy Bounce 2004 20301.8875
Italy Mouse Pad 2004 1342.86407
Brazil All Produc 2004 200000
Brazil Bounce 2004
Brazil Mouse Pad 2004 2344.7976

This query creates an explain plan starting with:
SELECT STATEMENT
 SQL MODEL ACYCLIC FAST

Formulas in this model are not cyclic and explain plan will show ACYCLIC.
The FAST method is chosen in this case because it meets the two requirements
listed at the start of the appendix.

The SQL Model Clause of Oracle Database 10g
August 2003
Author: John Haydu

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
www.oracle.com

Oracle Corporation provides the software
that powers the internet.

Oracle is a registered trademark of Oracle Corporation. Various
product and service names referenced herein may be trademarks
of Oracle Corporation. All other product and service names
mentioned may be trademarks of their respective owners.

Copyright © 2003 Oracle Corporation
All rights reserved.

