Utility Stored Procedures for ASE

 (Version 1151C)

 Carl Kayser

April 6, 2000

This documentation and software was developed while the author worked for the Division of Consumer Price Computer Systems at the Bureau of Labor Statistics. All of the documentation and software is in the public domain and is not copyrighted.

Table of Contents

General Comments
page 3

Utility Stored Procedure Characteristics
page 4

Limitations inherit within Sybase
page 6

Utility Script
page 8

General Stored Procedure Limitations and Features
page 8

Specific Stored Procedure Limitations and Features
page 11

Utility Stored Procedures for Performance Monitoring
page 25

Appendix A: Storage types, Usertypes, and Datatypes
page 26

Appendix B: List of Utility Stored Procedures
page 30

Appendix C: Installation Guide
page 35

Appendix D: Release Changes from 1151B (October 13, 1999)
page 37

General Comments

These stored procedures should work with Sybase 11.5.1 EBF 8039 or higher on Sun Solaris. (Details are described in Limitations inherit within Sybase.) These procedures have several advantages over the Sybase-provided stored procedures:

· For character based clients (isql) a hierarchical “Table of Contents” via sp_sysprocs is available. A separate introductory guide to sp_syntax, sp_sybprocs, and sp_sysprocs is in IntroUtl.doc.

· For Graphical User Interface (GUI) clients (wisql, Rapid SQL, etc.) sp_describe may be more convenient than sp_sysprocs. This will list all of the stored procedures in alphabetical order with a one-line description. The most complete listing will be provided by sp_sysprocs '%'.

· In general these are more specific in usage (100+ stored procedures) and about the information returned.

· Almost all space units will be in pages (1 page = 2048 bytes except for Stratus). Only sp_cache and sp_devicestatus use units other than pages. Otherwise there is no mixing and matching of kilobytes and megabytes as with sp_helpdb.

· The output should be more “friendly” than for the Sybase procedures:

1) Extra conversions are frequently done to provide English text instead of the name of an object. Editing includes elimination of carriage returns, horizontal tabs, and line feeds. The editing is different for traditional Sybase objects such as rules and defaults, and for ANSI objects such as checks.

2) Keys are blanked out in repeating groups and hierarchies. Blank lines are usually inserted between repeating groups.

3) Output cardinal values will be comma punctuated (e.g., “1,234,567” instead of “1234567”).

4) Non-dbo owners of objects are almost always indicated.

5) Solaris disk and device information are generally listed in physical order and grouped by physical device. (A database may be on device X and its log on device Y. But are X and Y on the same disk? Names and virtual device numbers may be misleading.)

Except for sp_addcomment, sp_dumplog, and sp_removelogin all of these stored procedures are read-only.

Utility Stored Procedure Characteristics

No "reverse engineering" procedures are included. The correct technique is to store, backup, and maintain source code. Since I have never used auditing there are no corresponding procedures.

Most of the stored procedures can be executed from either chained or unchained mode.

There are no internal transactions hence unchained mode is set within the procedures. The important point is that they cannot be executed from within a transaction. In this case there will be an error message and the return value will be one. The transaction isolation level is generally reset to one from within these procedures if the isolation level is greater than one.

In general, these procedures are ANSI conformant. There are several exceptions. I use title = column instead of column [as] title and the Sybase wildcard patterns are used. In some cases ansinull is set off to either eliminate the irritating message 9501 ("Warning - null value eliminated in set function") or the coalesce function is used and it does not work correctly with this set option.

It may be convenient to reset defaults for numeric and flag type parameters for your environment. The same applies to the default parameters for sp_checksystables and sp_unused.

Definitions. By "alias" I mean a user created by the sp_addalias procedure. By "pseudonym" I mean a user created by the sp_adduser procedure with different values for loginame and name_in_db. I do not consider "dbo" or "sa" to be either an alias or a pseudonym.

Whenever reasonable (sp_alllocks, sp_blockers, sp_busy, sp_db, sp_dbdiff, sp_locking, sp_status) the owner of an object will be listed by the system (login) name (e.g., “sa”). However, in most cases the local (user) name is used (e.g., “dbo”). If the owner is “dbo” and there are no other objects of the same type with the same name then “dbo” will not be appended. Otherwise the owner will be appended. For sp_defaultcols, sp_domainsright (fourth section), sp_ruleuse, sp_triggers, and sp_usertypes the associated attributes will have an owner appended if the owner differs from the owner of the primary object.

Set proxy and setuser information will generally not be displayed. The exceptions (detailed below) are for sp_me and sp_status.

Physical device names (sysdevices.phyname) are assumed to have a format "like '%c%t%d0s%'". This provides sorting information for sp_deviceUNIX, sp_devicespace, sp_fragments, and sp_freedevice that in turn indicates contiguous space usage. Although there may be many devices on a disk the limiting performance factor is the number of disk heads.

Procedure parameters are listed in their descriptions from sp_describe procedure. Key-word values will be listed in quotes and are case insensitive. Stored procedures and their keywords are:

sp_checksystables
dp, lg, um (or any combination in a string)

sp_db
date, size

sp_describe
date, size

sp_devicespace
agg

sp_grantsme
columns, public (or both in a string)
sp_grantsuser
columns, expand, public (or any combination in a string)

sp_logins
password, roles, status, usage

sp_objectagg
byuser

sp_procs
any, chained, date, recompile, unchained, xp

sp_rules
date

sp_showtables
s, u, v (or any combination in a string)

sp_tablesx
date, owner, pages, rows, width

sp_triggers
date

sp_unused
pb, sr, sys, usertbl, view (or any combination in a string)

sp_users
alias, roles

sp_views
date, size

For some of the above procedures other argument values may be specified (e.g., sp_procs ABC lists all procedures that start with “ABC”, but sp_procs DaTe will list all procedures in date order). The keywords "columns", "expand", and "public" can be shortened to the first two (or more) characters.

Several arguments are used as flags. Their default is NULL and if any valid identifier is specified the opposite action from that indicated below will take effect:

Procedure
Flag name
Default action

sp_columnagg
null_flag
do not check nullability
sp_columnsunique
null_flag
do not check nullability

sp_date
format_flag
do not list date/time in every format

sp_display
long_flag
text is 78 characters wide instead of 127

sp_dumplog
type_flag
use truncate_only instead of no_log
sp_findtext
caseoff_flag
text search is case insensitive

sp_grants
column_flag
concatenate columns vs. individual rows

sp_grantsall
column_flag
concatenate columns vs. individual rows

sp_tablesx
sort_flag
sort in ascending order

sp_ownedby
drop_flag
do not create drop object script

sp_xactagg
detail_flag
do not aggregate by transaction

Limitations inherit within Sybase

EBF 8039 fixes bug # 143400. This bug prohibits sp_db, sp_depend, sp_textreindex, sp_tree(s), sp_users, and sp_uses from working correctly. (The error eliminated is message 233: The column <col name> in table <table name> does not allow null values.) The other procedures will work with the baseline 11.5.1.

Until bug fix # 92260 is implemented there may be unusual “spacing” of blank lines on the outputs. (Executing a select followed by a print within a stored procedure results in the selected output, a blank line, and then the number of rows affected from the select.)

Although sp_loggedmsgs and sp_objectagg should work correctly, messages marked for system logging by sp_addmessage or sp_altermessage will not actually be logged on UNIX platforms. This is bug # 138622 and the code for sp_loggedmsgs has been commented out.

Sp_busy [sample] [, pause] is a victim of bug # 123762 and bug # 190373. The output may have "jerky" output as it executes. The combination of print, select, and waitfor is not handled properly by Sybase. A small packet size may worsen this problem. There will also be a preliminary wait that depends upon the pause argument.

Sp_textreindex is an indirect victim of bug # 169886. Indexes created with the sorted_data option will not have a correct distribution page. The obvious workaround is to run update statistics on the affected tables afterwards. However Sybase document ID 20554 indicates that tables with less than 2 rows will not be updated (including cases where the value is corrupt).

Drop role <role> does not work correctly with 11.5.1 (bug # 142307). Neither sp_checksystables nor dbcc will indicate a problem.

Sybase denormalizes its usertypes and storage types into one system table: systypes. Datatypes are not stored in systypes; they are listed in the System and User-Defined Datatypes section of the Adaptive Server Enterprise Reference Manual. This makes for considerable headaches which, however, can generally be solved. (This is not foolproof, e.g., sp_addtype fubar, 'varbinary (8)', '[not] null’ will result in duplicate usertype rows with sp_help.) With release 11.5.1 the situation is "simpler" for newly created objects that use approximate numeric datatypes. More information is available in the General Stored Procedure Limitations and Features section and in Appendix A.

Sp_checksystables, sp_execsizes, sp_objectagg, and sp_procs will not return data if the configured number of locks is less than 1.2 times the number of pages for sysprocedures. These procedures do a scan on sysprocedures and Sybase never promotes page locks on this table to a table lock. A theoretical solution is to set transaction isolation level to 0 prior to procedure execution. However this solution results in terrible performance (bug # 140654). This bug will not be fixed in 11.5.x but is fixed 11.9.2.1 and later releases according to Sybase Customer Support.

Several utility stored procedures appear to be more sensitive to database differences than others. (The relative sizes of system tables can vary greatly between different databases.) Many System Administrators apparently do not run update statistics on system tables. In this case system tables will have either default distribution pages or distribution page values from the model database. In addition most “help” procedures do not use the with recompile option. So if procedure cache is fairly large then “stale” query plans could result in poor performance when these procedures are executed in different databases. The following procedures conditionally execute update statistics on some system tables. (Execution requires that the user be "dbo".) Procedures annotated with an asterisk also execute subroutines that have the with recompile option.

Procedure
System tables

sp_backexecall
sysdepends, sysobjects

sp_checkindexes
syscolumns, sysindexes, sysobjects

sp_dbdiff *
sysattributes, syscolumns, syscomments, sysindexes,

sysobjects, sysprocedures, systypes, sysusers

sp_domainsright
syscomments, sysobjects
sp_grants *
syscolumns, sysobjects, sysprotects, sysusers

sp_grantsme *

sysattributes, syscolumns, sysobjects, sysprotects, sysroles,

sysusers

sp_grantsuser *

sysattributes, syscolumns, sysobjects, sysprotects, sysroles,

sysusers

sp_trees

sysdepends, sysobjects

sp_users *

sysalternates, sysroles, sysusers

In addition sp_checksystables will run update statistics on most of the master-specific system tables if run in the master database by someone with the System Administrator role.

Sybase allows procedures to call procedures. Let’s assume that X calls Y that calls Z. Their dependencies (by object id) are stored in sysdepends. However at execution time the calls are made by name and not by id. If Y is dropped and recreated then X is executable (unless you have screwed up the parameters). Dropping Y resulted in a sysdepends row being deleted (for Y calling Z). The row for X calling Y was not deleted! The creation of a new Y did not result in a row being added to sysdepends to reflect the call from X to Y. A row indicating Y calling Z was added.

What does this mean to you? It means that the following stored procedures may not be reliable: sp_backexec(all), sp_depend(x), sp_tree(s), sp_unused, sp_uses and Sybase’s sp_depends. If sp_usesright indicates no problem then the above procedures should be accurate. Otherwise use the sp_usesright output to redefine the indicated stored procedures (which will reload the sysdepends table). And execute sp_usesright again to be sure.

A potential problem is that Sybase will “fix” things up by deleting the “X calls Y” row from sysdepends when Y is dropped. Then the “problem” stored procedures cannot be identified by sp_usesright or by anything else!

This may not appear to be much of a problem to some people. After all the call execution will work fine so long as all of the stored procedures exist. There are two potential flaws with this:

1) How do you know all of the stored procedures exist? Answer: you will find out at execution time. Will the execution failure be critical to you?

2) The stored procedure arguments may change. How do you determine which stored procedures call this procedure so you can modify them as well?

Utility Script

Upgrade.sql is an SQL script to facilitate Server upgrades and should be Sybase version independent. It will generate SQL that will sequentially have:

1) An sp_dboption <database>, <option>, false for every database/option that is set. (Exception: select into/bulkcopy/pllsort is intentionally not turned off for tempdb.)

2) A use <database> and checkpoint for every database referred to in (1).

3) An sp_db to verify that all options have been turned off.

Obviously the script should be saved in order to rerun it with "false" changed to "true" after the upgrade.

General Stored Procedure Limitations and Features

Several procedures (e.g., sp_columnsx and sp_tablesx) have an "x" suffix since there already are Sybase procedures with these names. I may not like the Sybase-provided utility procedures but it would be inappropriate for my scripts to replace them.

Stored procedures that may run for a long time have print statements interspersed. Otherwise it is hard to know whether the procedure is executing or if there is a problem. This is fine for isql. However the GUI clients usually require user actions since select and print output is segregated. This can be a real pain in the neck.

The sp_ownedby, sp_textreindex, and sp_textselectivity stored procedures are used to generate SQL that can then be submitted with isql, SQL Advantage, etc. The actions of the generated SQL cannot be done directly with stored procedures. (Stored procedures cannot parameterize object names, column names, etc.) The exact technique is at the user's discretion. These procedures write text with a maximum width of 127 characters. It is recommended that that the "-w" option with a value of at least 129 be used with isql.

Quoted objects may or may not be displayed with quotes. (Sybase is inconsistent in its storage of names.) This should not be a problem for most procedures since only information is listed. However this may cause problems with the sp_ownedby sp_textreindex, and sp_textselectivity stored procedures since the generated SQL has to be executed. Details are provided below for each of these procedures. ANSI specifies that no objects other than tables, views, or columns can be delimited, i.e., quoted, however Sybase allows many other objects to be delimited. Sp_domainsright may be of help in identifying these.

Explicit conversions with @@timeticks are done for sp_busy so that times are in seconds. If the sysconfigures values for “cpu accounting flush interval” or “i/o accounting flush interval” are low the time and/or I/O results from sp_alllocks, sp_blockers, sp_busy and sp_status can be misleading. (The cpu and physical_io values in sysprocesses are reset periodically depending upon these sysconfigures values. See the Adaptive Server Enterprise System Administration Guide for more information.)

Datatypes are generally listed (from sp_columnsunique, sp_columnsx, sp_common, sp_datatype, sp_parameters, and sp_showtable(s)) as the type specified in the appropriate create statement. However see the comments in Appendix A concerning the approximate numeric datatypes. A suffix of “*” indicates that the column is nullable. This also applies to sp_usertypes.

Procedures being executed, as shown by sp_blockers, sp_busy, and sp_status, should be accurate if they are in the database being used. If a procedure is being executed in another database the procedure name could be incorrect. Procedure names are searched (by database id, object id) in the order "users current database", sybsystemprocs, master, and dbcc. There is an ISUG request (Id e01_058) to add an additional database id column to the sysprocesses table that would eliminate this problem. If a non-null procedure name is not found then "(Unknown Procedure)" will be displayed. The line number of the procedure is also indicated. (However I have not found line numbers to be accurate for PC NT clients. Perhaps they are correct for Unix clients?)

Several procedures (sp_allocks, sp_blockers, sp_busy, sp_checksystables, sp_locking, sp_refkeysx, and sp_status) use the object_name function with a database argument. If the user is not a user in the referenced database then error 10351 (Server user <suid> is not a valid user in database <db_name>) will occur. Note, for example, that sp_alllocks will use the object_name function on every database that has a lock. This appears to be an undocumented change from the behavior with 11.0.3.1. An easy fix for "ordinary users", unless it is a security violation, is to add a guest user to each database.

Keys listed from sp_checkindexes, sp_indexchoices, and sp_indexes will have the following characteristics:

(key): indicates a nullable column which, de facto, is variable length

[key]: indicates a variable length column which is non-nullable

key: indicates a fixed length non-nullable column

The ANSI escape clause is not used with wildcards in these stored procedures. The Sybase wildcard usage of special characters (“%”, “_”, “[”, “]”, and “^”) is used instead. (ANSI usage implies that I need an additional parameter for an escape value in these stored procedures which I prefer not to do. Also Sybase is not ANSI conformant with respect to wildcards despite what their documentation claims.) Details can be found in the Pattern Matching with Wildcard Characters section of the Adaptive Server Enterprise Server Reference Manual. The specific stored procedures and arguments where wildcards can be used are:

sp_findtext text

sp_indexes prefix

sp_indexnames prefix
sp_procs prefix
sp_showtables prefix
sp_sprocs prefix
sp_sybprocs topic
sp_tablesx prefix
sp_users prefix

sp_views prefix
Depending upon your database object naming conventions the prefix argument can be quite convenient. The prefix argument always refers to “like ‘prefix%’” and the text or topic argument always refers to “like ‘%text%’” or "like '%topic%'". Note that one can specify a prefix value with a leading "%" to make it similar to the text usage.

The sp_indexes [prefix], sp_indexnames [prefix], and sp_tablesx [prefix [, sort_option]] stored procedures have local variables @exclude1/2/3 with respective values "sys%", "pb%", and "sr[_]%". The sp_views [parm] stored procedure has a default value of "sr[_]%" for @exclude1. If the default argument of NULL is used then tables with these prefixes will not be listed. This allows one to easily ignore system and pseudo-system tables. (These can always be listed separately, e.g., sp_indexes sys.) One may want to change these default values at installation time.

The sp_roletree and sp_tree stored procedures have a local variable, @textlen, for controlling output width. The value must correspond with a table column width. These values are checked at execution time.

Specific Stored Procedure Limitations and Features

Sp_add number1, number2 [, number3 [, number4 …]] will return a comma-formatted sum with two decimal digits. (Long numeric strings are much easier to read with embedded commas.) Leading "+" and "-" symbols can be used but comma embedded numbers cannot be used. A maximum of 12 numbers can be specified.
Sp_busy [samples] [, pause] will always include process that are blocked or are blocking other process regardless as to whether it has CPU or I/O changes. Each display section only includes processes that existed at both the start and end times. (Processes that started or ended within a time slice will not be displayed.) CPU time slice differences must be at least 1/10 of second and the CPU usage is rounded. (The @cpu_play constant can be changed from 1/10 if desired.) Additional information for blocking processes is available from sp_blockers and sp_oldxacts.
Sp_cache will list I/O sizes as “2K”, “4K”, etc. All other values will be in pages. The other utility stored procedures that indicate cached objects are sp_db, sp_indexes, sp_objectagg, and sp_tablesx. The pages listed are of the current size of the cached object on disk. There may be less in cache. Also there may be more in cache if 16K I/O is done. In the latter case extents are moved (instead of pages) so unused pages could be in cache. Three sections will be listed:

1) A list of all caches with type/status/size and LRU replacement strategy information.

2) A list of all data pools with I/O size, wash size, pool size, and asynchronous prefetch information.

3) A list of cached objects for the current database. Tables and indexes will be suffixed with the indid of the cached "index".

Sp_checkindexes [table] [, density] checks for potential performance and maintenance problems with indexes. (See also the details for sp_indexchoices further below.) The specific checks are for:

1) suspect indexes (as set by dbcc)

2) non-unique clustered indexes

3) tables with any index page / data page ratio > density%

4) indexes with rows and a default statistics page

If table is not specified then all user tables will be checked. Tables without indexes can be detected with sp_tablesx. It is a good idea to periodically check the individual system tables. Most of them can be re-indexed via sp_fixindex dbname, tabname, indid.

There are several ways to measure the "quality" of an index without any application knowledge. I am aware of stored procedures that measure problems via:

a) the presence of nullable subkeys

b) the use of a default statistics page

c) a key length greater than some number

d) a key with more than some number of subkeys

e) a non-clustered index on a small (measured in pages) table

I have found non-unique clustered indexes to be very poor on ShareBase (Britton-Lee) and I try to avoid them on Sybase as well. The overflow pages are killers; it is better to make a longer but unique key. Also dbcc error 2582 is more likely to occur with a non-unique (versus unique) clustered index. My use of (3) above is dynamic since today's data may result in a different ratio than yesterday's data. It may also correlate with my recollection that if an index is useable and more than 15% of the data pages are expected to be used then the optimizer will choose a scan instead. Only indexes with a minimum of three index pages will be checked. If any table index exceeds the density percentage all indexes will be listed for the table.

Sp_checksystables [off_string] will check (1) the entity-relationship aspect of system tables and (2) the consistency of status values with the existence or nonexistence of rows or status values on other system tables. A number of Sybase procedures (e.g., sp_bindrule and sp_dropkey) modify system tables without doing it in transaction mode. If the stored procedure or server crashes during one of these activities the system tables could be inconsistent. The entity relationships are derived from the Sybase 11 System Tables Diagram (part number 70204-01-1150-01).

The existence of threshold procedures is only checked for in the current database and sybsystemprocs. (Note also that the suid field is not checked.) An incorrect error message may be generated if the procedure is in a different database. Argument off_string (default value "DP") can turn off some checking if desired:

1) If off_string contains "dp" then sysdepends will not be checked. The checking of sysdepends can be done separately with sp_usesright.

2) If off_string contains "lg" then syslogins will not be checked. The default language used to be NULL and is now "us_english". Syslanguages is usually empty and many messages may be created.

3) If off_string contains "um" then sysusermessages will not be checked. The default is to check both the language and uid. Syslanguages is usually empty and sp_dropuser does not check sysusermessages before dropping a user.

Sp_columnagg will list unique combinations of column names/datatypes with a frequency count. Only column names for user tables and views are included. Sp_columnagg null_flag will differentiate datatypes by nullability as well. Columns with the identity attribute will always be differentiated from non-identity columns. To determine inconsistent columns use sp_columnsunique.

Sp_columnsunique will check for different usertype, length, precision, or scale of columns with the same name. Sp_columnsunique null_flag will also include the checking of nullability. Columns of type float (P1) null or float (P2) not null where P2 is less than 16 will, in essence, be checked for nullability regardless of null_flag. (P1 is irrelevant.) See Appendix A for more details on the float datatype.

Sp_date returns the current date/time in Mon, DD, CCYY (HH:MM:SS AM/PM) format. Sp_date format_flag lists all of the possible convert formats for the current date/time. The format_flag option is based upon sp__date written by Simon Walker, The SQL Workshop Ltd.

Sp_db date and sp_db size will not include database options (as sp_db does). They will indicate the data/log configuration. There appear to be five possible data/log configurations:

separate:
there are separate data and log areas.

mixed:
data and log use common space only.

mixed + data:
there is common space and one or more dedicated data areas.

mixed + log:
there is common space and one or more dedicated log areas.

mixed + data + log:
there is common space and one or more dedicated data areas and

one or more dedicated log areas.

Sp_dbdiff otherdb compares the structure of the current database and otherdb. There will be seven output sections:

1) A list of user-named defaults, rules, stored procedures, tables, triggers, and views that are in one database and not the other. Source text is not compared; only the names of objects of the same type are compared. Names of checks, referential constraints, unnamed defaults, and usertypes are not compared.

2) Columns that are only in one database and not the other. This only applies to tables/views that are common to both databases.

3) Columns that are on common tables or views but have different attributes. Column attribute changes are based only upon differences in storage type, size, or nullability. Columns with different usertypes can map to the same storage type and will not be listed in this case. Types timestamp, sysname, nvarchar, and nchar will be listed as varbinary, varchar, varchar, and char respectively.

4) Stored procedures in both databases that have different attributes: chained, unchained, anymode, or recompile. No comparisons are made for extended versus non-extended stored procedures.

5) Indexes that are only in one database and not the other. This only applies to common tables. Indexes will only be listed if they differ in any of the following attributes:

a) Any key or the order of keys. Only the first eight keys are checked.

b) Clustered or nonclustered.

c) Primary, unique, or non-unique.

d) Ignore_dup_key, ignore_dup_row, or allow_dup_row.

6) Different lock configurations for the databases and for common tables.

7) Different cache configurations for the databases and objects:

a) Cached objects that are only in one of the two databases.

b) Common objects which are bound to different caches.

National character datatypes will list the actual length used instead of the implied length. Objects with the same name but different owners in the two databases are considered to be different. However if login1 and login2 own databases db1 and db2 respectively then same-named objects owned by then will be considered to be owned by “dbo” and will not be listed as having different owners. If login1 is user1 in db2 and owns table table1 then table1 will be listed as a dropped or new table (since login1 is “dbo” instead of user1 in db1).

Sp_depend and sp_dependx are only accurate for procedures which use delete, insert, select, and update within the same database. The sysdepends table does not record the following dependencies for a stored procedure:

1) alter database

2) alter table

3) create database

4) create index

5) create table

6) create view

7) drop database

8) drop index

9) drop table

10) drop view

11) truncate table

Mode (read/write) information is listed for dependent stored procedures and triggers. It is not available for dependent views. Dependent triggers will always have an implicit read on the base object. SQL primitives imply mode as follows:

delete:
read/write

insert:
write

select:
read

update:
read/write

Sp_dependx and sp_uses display “what uses” and “what is used by” an object respectively. Sp_depend will call either or both of these procedures depending upon the object type. (You don’t have to remember which to use for an object. Just use sp_depend to get both.)

Sp_deviceUNIX [device] will list the UNIX file names (device number and name, physical name, and mirror name, if appropriate) for all devices if device is not specified. If a valid device is specified only the file name(s) for device will be listed. If "sort" is specified then all file names will be listed and ordered by controller type and virtual device number instead of the default controller type, controller number, target number, and slice number order. (Sp_helpdevice output is in device name order.)

Sp_deviceright checks for:

1) Gaps in the Virtual Device Numbers.

2) Devices that are mirrored on the same controller or disk.

3) "Mirrored" devices that are unmirrored or only partially mirrored.

4) Databases or logs on dissimilar devices, e.g., a database or log on both a mirrored and unmirrored device makes no sense.

5) Databases and their logs on the same disk. (Alter/create database will inform the creator if the same device is used.) Since there is only one head to a disk this is a more significant check in detecting potential performance problems. Only disks that have this “conflict” for a database will be listed.

Sp_devicespace [device] will list space usage for all devices if device is not specified. There will be a blank line inserted whenever the controller number or target number changes. If a valid device is specified only space usage for device will be listed. If "agg" is specified then aggregate space usage for the server and all devices will be listed. There will be a blank line inserted whenever the controller number or target number changes in the third section. The reports will always include free space information.

Sp_devicestatus [device] will show either partial statuses/names for all devices or all statuses for device. Note that sp_devicestatus tapedevice will list the tape capacity in megabytes or gigabytes. This is a rare exception to using size units of pages in these stored procedures. If device is not specified the devices will be listed in controller type, controller number, target number, and slice number order.

Sp_display object [, long_flag] does not have the alignment problems of sp_helptext object but will only print 78-character wide lines of text. If the additional argument long_flag is set then sp_display will print 127-character wide lines. The lines may be truncated; they will not “continue” onto another line. Unfortunately it seems that isql generates an extra blank line for each text line when long_flag is specified. If there are user provided comments (syscomments.texttype <> 0) these will be listed before the normal system provided text (syscomments.texttype = 0). For objects with more than 255 pseudo-rows of text sp_helptext will interleave the two kinds of text.

Sp_domainsright checks for:

1) invalid quoted identifiers. Only columns, views, and user tables should be quoted identifiers however Sybase does minimal enforcement of this.

2) columns with a mix of check constraints, rule constraints, and/or singular foreign keys.

3) the absence of a reference to the column in any column constraints. (Sybase does no real checking on the appropriateness of column constraints. Also check col1 > 5 and col2 > col3 or col4 > col5 would not be listed as incorrect if this were a column check for any of col1, col2, col3, col4, or col5.) This check is not foolproof. Note that Sybase allows for completely bogus check constraints; these will be “caught” at execution time.

4) overrides of usertype defaults.

5) additions to or overrides of usertype rules.

6) columns of type bit with a check or rule constraint.

The specific objects checked for being an invalid quoted identifier in (1) above are:

a) defaults

b) indexes

c) rules

d) segments

e) stored procedures

f) triggers

g) usertypes

h) character sets (master only)

i) databases (master only, however db_name () is always checked)

j) devices (master only)

k) languages (master only)

l) logins (master only)

Sp_findtext text [, caseoff_flag] will search syscomments, sysmessages (in master only), and sysusermessages and will generally center text in the output. The caseoff_flag default value is NULL so the text search is case sensitive. Any value for caseoff_flag will make the text search case insensitive. The search is not 100% accurate since text can be split on two separate text rows in syscomments. Description text from sysmessages and sysusermessages will start at the beginning of the message text. Also “sp_findtext ‘--‘” and “sp_findtext ‘/*’” will have the output left justified on “--” or “/*”. Sp_findtext does not "glue" text rows together so leading/trailing text may be blank in the output. Only system provided text (texttype = 0) will be searched for in syscomments. Object names (versus text) may be repeated if the object has more than 255 lines of text in syscomments. “Sp_findtext ‘..’”, “sp_findtext ‘.dbo.’”, etc. are of use in determining cross database references.

Sp_freespace will list separate data and log usage if there is separate data and log space:

%DB USED:
(DB ALLOC PAGES) / (DB TOTAL PAGES)

TOTAL PAGES:
Pages for data & indexes from create/alter database commands

FREE PAGES:
TOTAL PAGES - (Reserved pages for data & indexes)

ALLOC PAGES:
Reserved pages for data & indexes

DATA PAGES:
Data pages used for data

INDEX PAGES:
Data pages used for indexes

TEXT PAGES:
Index pages used for text/image data

%LOG USED:
(Log ALLOC PAGES) / (Log TOTAL PAGES)

TOTAL PAGES:
Pages for syslogs from create/alter database commands

FREE PAGES:
(TOTAL PAGES) - (Data pages for “data”)

ALLOC PAGES:
Data pages for “data”

Otherwise there will be only one row for the database:

%USED:
(ALLOC PAGES) / (TOTAL PAGES)

TOTAL PAGES:
Pages for everything from create/alter database commands

FREE PAGES:
(TOTAL PAGES) - (Reserved pages)

ALLOC PAGES:
Reserved pages for anything

DATA PAGES:
Data pages used for data

INDEX PAGES:
Data pages used for indexes

TEXT PAGES:
Index pages used for text/image data

DATA PAGES is the actual number of pages used by a table or index and does not include pages used for internal structures. Reserved pages is the number of pages allocated for a table or index and includes pages used for internal structures. TOTAL PAGES will always be a multiple of 8, which is the size of an extent. The data/log configuration will be indicated at the output beginning if the data/log space is not separate. See the comments for sp_db date/size for details. Sp_freespace may be slow since it uses functions that apparently have implicit locks on sysindexes and/or sysobjects. Sp_fragments db provides less detailed information but will be faster.

Sp_grants, etc. will list a single “All” value for a table to represent the specific combination of delete, insert, references, select, and update. An “All” permissions row for a column indicates references, select, and update for the column. Grant/revoke all can be done for a table. Grant/revoke all for a column cannot be done despite what the Sybase documentation states. However it certainly makes sense and, in my mind, should be valid. Using “All” in these reports reduces the output volume that can be considerable. The procedures will work correctly on tables that have column protections and have gaps in their column ids (e.g., sysdatabases, sysdepends, sysindexes, and sysprocedures).

The sp_grants and sp_grantsall outputs will concatenate columns (in colid order) per object. The list may be truncated. Specifying a non-null column_flag value will generate one row for each column for column protections. However the rows will then be in alphabetical column order per object and not by colid order.

Sp_grantsme [parms] and sp_grantsuser user [, parms] will list permissions for a "user". The user argument can be an individual, a group, or a role.

1) If user is a group then only the privileges for the group will be listed.

2) If user is a role then only the privileges for the role in the current database will be listed.

3) If user is a user then the non-public group privileges and all direct or indirect role privileges for user will be listed. Note that sp_grantsme may return more data than sp_grantsuser user if user has the system administrator role, is a “dbo”, or is aliased to a “dbo”.

Several options can be specified by the case insensitive parms character string value.

a) If the string contains "co" then all column privileges will be listed by individual rows. The effect is the same as for a non-null column_flag value for sp_grants or sp_grantsall.

b) If the string contains "ex" and user is a role then all privileges for subordinate roles to user will also be listed.

c) If the string contains "pu" then all privileges for "public" will be also be listed.

Sp_groups (and the equivalent sp_roles) will list all groups and roles in the current database with aggregate permission information. They will be listed by “public”, other groups, and then by roles. A blank line will separate these three groupings. All groups will be listed even if a group has neither members nor protections. On the other hand only roles that have a protection in the database will be listed. The role membership count will be for the current database and not for the grantees in the master database. Sp_members will list every group and role in the current database with aggregate information. Sp_sysroles and sp_userroles provide detailed global information on roles.

Sp_indexchoices can be thought of as a “milder” version of sp_checkindexes. It addresses design aspects of indexes and lists:

1) tables without a clustered index. (Is space management done with segments?)

2) tables with multiple indexes. (Should a different index become the clustered index?)

3) tables with duplicate/overlapping indexes. (Are some indexes redundant or not useful?) The criterion used is that the first two subkeys are identical. For indexes with only one key the comparison is only for that key.

4) indexes that do not support primary or foreign keys. This section will only be listed if there is at least one table with a foreign key constraint. The implication is that the listed index (1) cannot be a primary index owing to a nullable subkey, or (2) the index is for performance reasons.

Sp_indexes [prefix] and sp_indexnames [prefix] will list output in the same relative order (by indid) to facilitate matching index names with their keys. Assume that a database has only three tables: A, AB, and ABCDE. Then:

1) Sp_indexes and sp_indexes A will list the indexes for all three tables and the keys may be truncated.

2) Sp_indexes 'A ' will list the indexes only for table A with all keys.

3) Sp_indexes AB will list the indexes only for tables AB and ABCDE. The keys may be truncated.

4) Sp_indexes ABC will list the indexes only for table ABCDE with all keys.

(Aside. I dislike the "feature" of index names. Indexes could be dropped with syntax similar to the create index syntax instead of using table_name.index_name. It's inconsistent for Sybase to favor index names and to have the sysindexes index on (id, indid) instead of (id, name). Note that from tablename (index <indid>) is no longer valid with 11.5.1; an index name or table name (for table scans) must be used. However the index name can be (and is for clustered indexes on system tables) identical with the table name! In this case specifying (index <name>) results in the index being used. Sybase's kludge solution for specifying a table scan in this case is to code from tablename (0). Note also that Sybase's sp_fixindex, dbname, tabname, indid does not have an index name parameter.)

Sp_lastxact xacts will list the last xacts completed transactions. It is quite possible that operations for other active transactions will be interspersed. This procedure is useful for verifying what mode (deferred, cheap, etc.) of delete/insert/update operations are supposed to have happened. (Execute a stored procedure or SQL script followed by sp_lastxact.)

Sp_lockconfig will list lock promotion data (HWM, LWM, and PCT) in priority order:

1) All table-specific lock configurations for the current database.

2) The lock configuration, if it exists, for the current database.

3) The server-wide lock configuration.

Note that the above promotions only take effect when transaction isolation level 3 or holdlock is used.

Sp_loginwhere login will include a count of owned objects by database. This may include many secondary objects (e.g., permissions and constraints) that are dropped when tables, stored procedures, etc. are dropped. If login is an alias to “dbo” then the count will be zero. The value of "guest" may be used for the login argument.

Sp_me will additionally display the users original login information if set proxy was issued. Additional user information will also be displayed if setuser was invoked.

Sp_new [days] is limited to detecting new tables, views, stored procedures, defaults, rules, check constraints, triggers, and referential constraints. New databases, engines, and logins will also be listed when run in the master database. Sybase does not provide creation dates for indexes, statistics recomputation, groups, users (vs. logins), the group date for a user (via sp_changegroup), usertypes, user messages, protections, roles, segments, and devices. Therefor sp_new cannot determine new objects of these types. (If a problem occurs with a database one of the first things that I want to know is what has changed recently.)

Sp_objectagg will list database object type aggregates independent of the object owner. Aliases, pseudonyms, and “normal users” are counted separately. Permissions are also counted separately for groups, roles, and users. Counts for individual groups, roles, or users can be listed via sp_grantsagg. Note that “default null” (whether explicit or implicit) never results in the creation of a default in sysobjects or sysprocedures.

Sp_objectagg login will list object type aggregates for login if login is a valid login. (Login can own databases without being a user in the master database. In this case only the number of databases owned will be displayed.) If "byuser" is specified then the aggregation will be by user and object type. Permissions are only counted for users by sp_objectagg login or sp_objectagg byuser.

Sp_objectsunique will detect duplicate names in sysobjects. If executed in the master database then logins and roles will also be checked against each other.

Sp_ownedby user will list objects owned by user. (Some dependent objects, e.g., bound execution classes for stored procedures, checks, and permissions, will not be listed.) Sp_ownedby user, drop_flag will create a script file to drop the objects owned by user. The script will include use db and set quoted_identifier on if appropriate. The script sequence should be consistent (i.e., first drop tables and then drop usertypes). There are some limitations and features with the generated SQL script:

1) Database deletions will never be in the generated script.

2) Permissions on objects not owned by user (via grant … with grant option) will be listed but will not be included in the drop output.

3) Appropriate sp_unbindexeclass SQL statements will be generated. However these are not listed if drop_flag is NULL.

4) Appropriate sp_dropmessage SQL statements will be generated. (Sp_dropuser does not check for user messages.) Caveat lector: the script will never provide the language option for sp_dropmessage message_num.

5) Thresholds may exist and be owned by “sa” without “sa” being a user. If “sa” is added as a user then sp_dropuser sa will not execute unless the associated thresholds are dropped first.

If executed in the master database and a login value is supplied for user all of the databases owned by user (regardless as to whether user is actually a user in master) will be listed. If user is not a user then database sizes and their sum will also be listed.

Sp_parameters will list (1) all stored procedures that do not have parameters, and (2) all stored procedures with their parameters and types. Sp_parameters procedure will list parameter information only for procedure. Parameters and types will be listed if either (1) the user owns procedure (whether it is unique or not) or (2) procedure is a unique procedure within the database. If procedure starts with “sp_” and is not in the current database it will be searched for in sybsystemprocs with an owner of "dbo". No Sybase information is available as to whether a parameter is input or output or whether it has a default.

Sp_readonly indicates tables for which you may want to set very low locking thresholds. It is more efficient to insert/delete one table lock into syslocks than to insert many page locks. This will only be effective if transaction isolation level 3 or holdlock is used. Obviously it is “cheap” to put many useful indexes on these tables.

Sp_refkeysright will check for:

1) Referential constraints where both the primary and foreign keys are not in the current database.

2) Referential constraints with inconsistent database ids and names.

3) Referential constraints with a composite foreign key where one of the subkeys is nullable. Assume that foreign key columns A and B reference primary key columns X and Y. If a value for A is null then B can have any value that is valid for its datatype and other constraints. Various options on nullable multi-column foreign keys are addressed in the ANSI SQL/95 standard.

4) Referential constraints with common first or second foreign subkeys. Duplicate foreign key constraints, which should not happen, will obviously be listed. The presence of rows does not necessarily indicate an error. However poor table design could be indicated.

Sp_refkeysx cannot list the owner of a primary key table in another database; the Sybase system tables and functions do not provide this capability.

Sp_removelogin login will execute sp_dropalias and sp_dropuser commands in the appropriate databases. The last command will be sp_droplogin regardless as to whether there were errors with sp_dropalias or sp_dropuser in any database. (Sp_loginwhere and sp_ownedby are useful if any problems arise.) Execution will be incomplete if:

1) login owns a database. Execution is terminated immediately and login is not dropped from any database.

2) login owns an object in a database. If sp_dropalias or sp_dropuser is unsuccessful execution will continue with other databases. Note that checks are done for users owning messages in sysusermessages as well as the other checks that sp_dropuser does. If any owned object is detected in a database then sp_dropuser will not be executed in that database.
Sp_rolesright detects potential configuration management problems with roles. The Security Administration Guide is ambiguous on some issues. Password protected roles are not enabled by login default activation. (The following item is documentation bug # 192461.) For roles that are a sub-role of an activated parent role passwords are not checked. A login can be redundantly granted unnecessary roles by having a granted role that is a sub-role of another granted role. This procedure will list:

1) Logins with default roles that are password protected.

2) Roles that have password “protected” sub-roles.

3) Logins with roles that are sub-roles of another granted role.

Login activated roles and password protected roles will be indicated by a "(dflt)" or "(pwd)" suffix respectively. The LOGIN SUB-ROLE column value will always be "-" for item (1) above. The LOGIN column will always be "-" for item (2) above. The procedure will always indicate that system roles are login activated even if sysloginroles.status is incorrect.

Sp_segments and sp_segmentdetail [segment] will suffix default segments with “##”. (A segment name of “default” does not guarantee that it is the default segment.) The default segment parameter for sp_segmentdetail is “logsegment”.

Sp_showtable table will display each column name for table with:

1) the datatype which was used in the create table statement with length/precision/ scale unless a usertype was used.

2) either the default from the create statement or the default name if a usertype was used.

3) the text of a check or rule constraint for the column. If both exist then either could be displayed. Table level constraints will not be listed. Sp_domainsright will detect columns which have any combination of check constraints, rule constraints, and singular foreign keys.

Sp_showtable table will list columns in the order of columns in the “create table” statement. (Sp_help table will always list nchar and nvarchar columns at the end.) A message will be displayed if a column default differs from the usertype default implied for that column. The offending default(s) will be prefixed with “! “.

The absence of a default (indicated via "-") could be incorrect since Sybase allows (explicitly and implicitly) columns to be “default null not null”. (This is invalid with ANSI SQL/89 and valid with ANSI SQL/95!) Note that table creation and the setting on/off of “allow nulls by default” could also be done in either order or interleaved (with different tables) several times. Sp_showtable assumes that “allow nulls by default” is set (if it is currently set) before creating any tables.

For a view the check/rule value will always be “-”. Also any view column defined as a substring of another column will always be listed as nullable.

Sp_showtables will execute sp_showtable alphabetically for all objects of a type (system table, user table, or view). “U” is the default. Other options are to list all tables/views (sp_showtables null) or only tables/views that start with prefix (sp_showtables prefix). If two different users have a table/view with the same name then both will be displayed as separate objects.

Sp_status [database/user] will list all processes, other than sleeping system processes, if no argument is specified. (Sp_status master will include all system processes.) If database/user is specified it will first be tested for a valid database. If no such database exists it will be tested for being a valid login. In the latter case the argument is checked with the names from syslogins; not from sysusers. If there are any blocked processes the blocked time will be listed. Otherwise there will not be a BLOCK column and some of the other columns will be wider. Login names will be suffixed with the original suid if set proxy was invoked. Two kinds of rows may be listed:

1) Normal processing rows.

2) Rows in master.dbo.syslocks that do not have a corresponding process. The rows will be for distinct system process ids and many of the columns will have a value of "?". These will always be listed unless [database/user] is invalid. Sp_oldxacts may be of use in identifying the source of these rows.

Sp_sybprocs [topic] will partially list the Sybase provided information for their System Procedures. The Sybase-provided database sybsyntax with table sybsyntax is required. There is no guarantee that the descriptions are accurate. Any Sybase utility stored procedure whose description (sybsyntax.dbo.syntax.syntax) contains the topic argument will be listed. The Sybase-provided procedure sp_syntax word [, mod] [, language] lists any module whose name contains the word parameter. (Actually word is an optional parameter. The Adaptive Server Enterprise Reference Manual documentation for sp_syntax is inconsistent.)

Sp_tablesx generally lists only user tables. However, sp_tablesx s, sp_tablesx sy, etc. will include system tables. See the comment at the end of the General Stored Procedure Limitations and Features section. If a cache is indicated it is for the data pages. Index caches, including those for clustered indexes, are not indicated.

Sp_textreindex [fillfactor] generates text that can then be redirected to recreate all indexes for user tables owned by the executor. This can be non-trivial owing to referential constraints. (Although I generally do not believe in “reverse engineering” procedures this procedure may be necessary since constraint names may be artificially generated.) The generated SQL text will sequentially:

1) use <database> and, if appropriate, set quoted_identifier on.
2) Execute sp_freespace.

3) Drop all referential constraints for the user.

4) Drop all indexes for the user.

5) Drop all index constraints for the user.

6) Recreate appropriate indexes, etc. per table in alphabetical order.

a) Create the clustered index for the table.

b) Create the clustered index constraint for the table.

c) Create all nonclustered indexes for the table.

d) Create all nonclustered index constraints for the table.

e) Rebind all caches to affected indexes and index constraints.

f) Execute sp_recompile for the table.

7) Recreate all referential constraints for the user.

8) Execute sp_freespace.

The generated SQL will explicitly specify almost all index options, segments used, and sorted_data for clustered indexes. The max_rows_per_page and consumers options will not be generated. Indids may not be preserved; the nonclustered indexes are created according to the relative order of the subkey column names per table. Warning messages will be generated if foreign or primary keys exist in a different database or if there are referential constraints with tables owned by another user. If fillfactor is not specified then with fillfactor = fillfactor will not be in the generated SQL and the default fill factor percent in the master.dbo.sysconfigures table will implicitly be used. Quotes will be generated appropriately (table names, index names, index column names, constraint names) with the exception of column names in sections (3) and (7).

Sp_textselectivity text may report selectivity values of 0 if there are no rows in the table. Unique indexes with one key will always have a selectivity of 1. The titles for the Index Selectivity and Distribution Page (first subkey) Selectivity are abbreviated. The keys will not be enclosed with brackets that would indicate either nullable columns or variable length columns. Quotes will not be generated for any identifiers.

Sp_thaprint is useful for sizing tempdb and other databases. Add multiple thresholds with it to determine high water marks of space usage.

Sp_tree SP will only provide a maximum of eight levels of nesting. There may be less displayed if you have long procedure names. Recursive calls, calls to procedures in other databases, and execution of procedures via variables cannot be determined.

Sp_unused [off_string] will check for unused defaults, groups, roles, rules, segments, user tables, usertypes, and views. Some of the listed objects (tables and views) could be used directly from a client. Note that “unused” means not referenced by any other database object. Some particulars:

1) Primary key tables are always "used" and are never listed but foreign key tables could be listed as being unused. Note that "primary" here means that there is a dependent foreign key table. The table could have either a primary or unique index to support the constraint.

2) Defaults and rules are “used” if they are bound to an unused usertype.

3) Roles may exist owing to a grant or revoke but not have a user with the role. These will be listed. But roles without a user (versus login) won’t “exist” in the database if the role has no protections and will not be listed.

4) Logins with neither CPU nor I/O activity will be listed if run from the master database. Logins that are not a user in any database nor have a system role will be listed on a separate row.

The case-insensitive off_string value is used to eliminate the checking of specified objects:

a) PB:
Do not check PowerBuilder tables

b) SR:
Do not check subscription tables or views

c) SYS:
Do not check system tables

d) USERTBL:
Do not check user tables

e) VIEW:
Do not check views

Multiple options can be specified within the string. Note that PB is implied by USERTBL and SR is implied by USERTBLVIEW. The default value is "PB,SR,SYS".

Sp_users [parm] will list different outputs depending upon the parm value:

1) “alias” (case-insensitive) will list all users that have an alias or pseudonym.

2) “roles” (case-insensitive) will list all users that have a user role in the database.

3) NULL (default) will list all users in user name order.

4) (other, case-sensitive) will list all users and logins like “parm%” in user name order. (This is useful when you’re unsure of a user or login spelling.)

Sp_usesright will only report the immediate and next immediate objects (suffixed with “ ##”) which use an invalid or newer object. Since Sybase allows nested calls 16 deep you theoretically may have to execute sp_usesright eight times. The owner of a base object will never be appended to the object name.

Sp_xactagg will list three sections about aggregate syslogs operations:

TRANSACTION COUNT:
Frequency of transactions by operation count

OPERATIONS/TRANSACTION:
Grouping of transactions by operation count

TOTAL TRANSACTIONS:
Sum of TRANSACTIONS

TOTAL OPERATIONS:
Sum of OPERATIONS

OCCURRENCES:
Frequency of type of operation

OPERATION:
Type of operation

Sp_xactagg detail_flag will list individual transactions with a frequency count by type of operation. The transaction ids are stored as varbinary (6) so they will be listed as a pair of numbers: a smallint and an int. A blank line will separate the transaction groups. Syslogs will contain information since the last “dump transaction” command (which may be done by a “timer”—use sp_db database to see if “truncate log on checkpoint” is set).

Utility Stored Procedures for Performance Monitoring

A separate collection of tables and stored procedures is available for performance monitoring. These are described separately in pfm1151a.doc. (There is no pfm1151b.doc or pfm1151c.doc.) However release changes for the monitoring software is in Appendix D of this document.

Appendix A

Storage types, Usertypes, and Datatypes

What are the Sybase storage types and what do they mean?

binary (N)
N-byte, 0 < N < 256, not null

bit
1-bit field, not null

char (N)
N-byte character, 0 < N < 256, not null

datetime
8-byte datetime in 1753/1/1 - 9999/12/31 range, granularity to 1/300 second, not null

datetimn
4 or 8-byte type with smalldatetime or datetime range and granularity, null

decimal (P, S)
(2 + ceiling ((P-2) / 2)))-byte exact numeric, 0 <= S <= P < 39, not null

decimaln (P, S)
(2 + ceiling ((P-2) / 2)))-byte exact numeric, 0 <= S <= P < 39, null

float
8-byte approximate numeric, not null

floatn
4 or 8-byte approximate numeric, null

image
linked list of 2K pages

int
4-byte signed integer, not null

intn (N)
1-byte unsigned integer, null or 2-byte signed integer, null or 4-byte

signed integer, null; N is 1, 2, or 4

money
8-byte $$$,$$$,$$$,$$$,$$$.cccc, not null

moneyn
4 or 8-byte type with smallmoney or money range, null

numeric (P, S)
(2 + ceiling ((P-2) / 2)))-byte exact numeric, 0 <= S <= P < 39, not null

numericn (P, S)
(2 + ceiling ((P-2) / 2)))-byte exact numeric, 0 <= S <= P < 39, null

real
4-byte approximate numeric, not null

smallint
2-byte signed integer, not null

smallmoney
4-byte $$$,$$$.cccc, not null

smalldatetime
4-byte datetime in 1900/1/1 - 2079/6/6 range, granularity to the minute, not null

text
linked list of 2K pages

tinyint
1-byte unsigned integer, not null

varbinary (N)
N-byte maximum, 0 < N < 256, null

varchar (N)
N-byte maximum, 0 < N < 256, null

Note that for the decimal, decimaln, numeric, and numericn types P must be greater than zero. In addition there is the pseudo-storage type "sysname" which is defined as "varchar (30) not null". It cannot be used directly but a user-defined usertype can be based upon it. The usertype definition cannot specify "null".

What are the Sybase usertypes and what do they mean? They are the above “storage types” excluding:

datetimn

decimaln

floatn

intn

moneyn

numericn

sysname

and including the following three usertypes.

nchar (N)
varchar (N * @@ncharsize)

nvarchar (N)
varchar (<characters used> * @@ncharsize)

timestamp
varbinary (8), null

Additional usertypes may be defined upon these except for timestamp.

(continued on next page)

What are the Sybase datatypes and what are their corresponding usertypes and storage types? (By datatype I refer to the type name in a create table statement excluding user defined usertypes. The datatype and its nullability determine its usertype and storage type.)

Datatype
Nullable
Usertype
Storage Type

binary
no
binary
binary

binary
yes
binary
varbinary

bit
no
bit
bit

char
no
char
char

char
yes
char
varchar

datetime
no
datetime
datetime

datetime
yes
datetime
datetimn (8)

decimal
no
decimal
decimal

decimal
yes
decimal
decimaln

double precision
no
float
float

double precision
yes
float
floatn (8)

float (P < 16)
no
float
real

float (P > 15)
no
float
float

float
yes
float
floatn (8)

image
-
image
image

int

no
int
int

int
yes
int
intn (4)

money
no
money
money

money
yes
money
moneyn (8)

nchar
no
nchar
char

nchar
yes
nchar
varchar

numeric
no
numeric
numeric

numeric
yes
numeric
numericn

nvarchar
-
nvarchar
varchar

real
no
real
real

real
yes
real
floatn (4)

smalldatetime
no
smalldatetime
smalldatetime

smalldatetime
yes
smalldatetime
datetimn (4)

smallint
no
smallint
smallint

smallint
yes
smallint
intn (2)

smallmoney
no
smallmoney
smallmoney

smallmoney
yes
smallmoney
moneyn (4)

text
-
text
text

timestamp
yes
timestamp
varbinary

tinyint
no
tinyint
tinyint

tinyint
yes
tinyint
intn (1)

varbinary
-
varbinary
varbinary

varchar
-
varchar
varchar

Comments

Sybase has approximate numeric storage types real, float, and floatn. Their attributes are machine dependent. ANSI has only one approximate numeric type: float (P). (Double precision and real are alternative ANSI “spellings” for float with implementation defined precisions. Real turns out to be a 4-byte float and double precision an 8-byte float. Both will have precision and scale of null.)

The Sybase approximate numeric types make for a rather confusing situation. Prior to 11.5 one could specify a "float (precision)" datatype. The precision would be stored in syscolumns. With 11.5 this datatype becomes either real or double precision depending upon whether the precision is greater than 15 or not; the precision will be null in syscolumns. (The value of 15 is accurate for Solaris. It may be hardware dependent.) So tables created before an 11.5.1 upgrade will have float (precision), real, or double precision displayed by the utility procedures and tables created afterwards will have real or double precision displayed.

According to ANSI, numeric (P, S) fields have an exact precision of P digits. Decimal (P, S) fields have a minimum precision of P digits. The value of P in the latter case may be hardware dependent.

One cannot create tables that will have a datatype or usertype of datetimn, decimaln, floatn, intn, moneyn, or numericn. These represent storage types. However one can select into from system tables (syskeys and syssegments) which will result in user tables with usertype intn. Sp_help will indicate columns of type intn (1/2/4) and sp_showtable will indicate columns of type tinyint/smallint/int.

Other weird tables can be constructed from system tables with select into. Nulls are allowed for sysindexes.name and syslogins.dbname even though they have storage type sysname. Syscurconfigs.status has a usertype of varchar (2) and a storage type of smallint. Both sp_help and sp_showtable will indicate a type of smallint. Sysconfigures.status is similarly misconfigured in system 10.

Appendix B

List of Utility Stored Procedures

This list of stored procedures with descriptions does not include subroutines nor does it include the performance monitoring procedures. This is basically the output from sp_sysprocs '%'.

Procedure
Description

--

add
Performs addition on a maximum of 12 NUMBERs

alllocks
Lists all locks for system (except for sp_alllocks itself)

backexec
Displays calling stored procedures for STORED PROCEDURE with

FORMAT option

FORMAT = 0: the symbol note will not be printed

FORMAT = 1: the symbol note will be printed (default)

FORMAT = 2: three sections will be listed:

(1) directly calling stored procedures

(2) indirectly calling stored procedures

(3) highest level calling stored procedures

backexecall
sp_backexec for all subroutine stored procedures

blockers
Lists blockee/blocker for all databases

busy
Lists processes whose CPU or I/O usage is changing

SAMPLE (default 4) indicates how many samples

PAUSE (default 5) seconds between samples

cache
Displays basic data for (default) all caches or for CACHE

checkindexes
Lists user indexes with problems or potential problems

options (defaults) are TABLE (NULL) and DENSITY (15)

checks
Lists check constraints for TABLE or (default) all tables

checksystables
Checks consistency of system tables (with multiple options)

(NULL):
maximum checking

"DP":
sysdepends not checked (default)

"LG":
syslogins not checked

"UM":
sysusermessages not checked

columnagg
Displays column datatype aggregates (option: NULL_FLAG will include

nullability)

columnsx
Lists tables/views with COLUMN1 [, COLUMN2]

columnsunique
Checks consistency of user column names by type/length

if NULL_FLAG is non-null check by type/length/nullability

common
Lists column names common to OBJECT1 and OBJECT2

datatype
Lists columns of type DATATYPE and (optional) LENGTH/PRECISION

date
Prints current date/time in Mon DD, CCYY (HH:MM:SS AM/PM) format

If FORMAT_FLAG is non-null then all date formats are displayed

db
Lists database configurations with various scope/sort options:

(NULL):
info for all databases (default)

DATABASE:
complete status info only for specified database

“DATE”:
partial info for all databases in creation order

“SIZE”:
partial info for all databases in size order

dbdiff
Lists structural differences between the current database and OTHERDB

defaultcols
Lists columns with user-named DEFAULT or (default) all columns with

user-named defaults

defaults
Lists all user-named defaults with their description

depend
sp_dependx + sp_uses for OBJECT

dependx
Lists procs/triggers/views dependent upon OBJECT1 [, OBJECT2 [, OBJECT3]]

describe
Describes utility procedures, e.g., “sp_describe sysprocs”

(NULL):
all utility procedures (default)

“DATE”:
all utility procedures with date data

PROCEDURE:
only utility PROCEDURE (leading “sp_” is optional)

“SIZE”:
all utility procedures with date and size data

deviceUNIX
Lists UNIX file name(s) for DEVICE or (default) all devices

deviceright
Checks for device (mirror & database/log) inconsistencies

devicespace
Lists space allocation on all devices (options: DEVICE or "AGG")

devicestatus
Lists all statuses for DEVICE or (default) partial statuses for all devices

display
Displays text of an OBJECT without wraparound (option: LONG_FLAG)

domainsright
Checks for consistency of column constraints/defaults

dumplog
Dumps log for current database with truncate_only (default) or no_log

execsizes
Lists size data for executable objects with #exec rows > SIZE

findtext
Lists non-table objects containing (case sensitive) TEXT

non-null NOCASE_FLAG provides case insensitive search

fragments
Lists device space fragments for DATABASE or (default) all databases

freedevice
Lists free space on DEVICE or (default) all database devices

freespace
Lists total/free/log space

globalexec
Execute UTILITY SP in every database with optional arguments ARG1,

ARG2, and ARG3

grants
Lists the explicit protections for an OBJECT

if COLUMN_FLAG is null (default) do not list individual columns

grantsagg
Displays protection aggregates

grantsall
Lists all explicit grants and revokes

if COLUMN_FLAG is null (default) do not list individual columns

grantscreate
Lists all explicit create/dump/proxy protections

grantsme
Lists the explicit protections for myself (with multiple options)

CO[LUMNS]: one output row per column protection

PU[BLIC]: protections for "public" will be listed

grantsuser
Lists the explicit protections for a USER/GROUP/ROLE (with multiple

options)

CO[LUMNS]: one output row per column protection

EX[PAND]: subordinate role protections will be listed for a role

PU[BLIC]: protections for "public" will be listed

group
Lists the unique group of which USER (default is user) is a member

groups
Lists all groups and local roles with aggregate data

groupsright
Checks server consistency for GROUP or (default) all groups

indexagg
Displays index aggregates for all user tables

indexchoices
Lists user tables with no clustered index, multiple indexes, or overlapping

indexes

indexes
Lists indexes/keys for tables like PREFIX% or (default) all user tables

indexnames
Lists index names for tables like PREFIX% or (default) all user tables

lastxact
Lists composition of last transactions in syslogs (default XACTS is 1)

lockagg
List aggregate lock data for system (except for sp_lockagg itself)

lockconfig
List lock promotion values for local tables/database and server

locking
Lists all locks for DATABASE or (default) current database

loggedmsgs
Lists logged user messages / non-fatal system messages

logins
Lists logins with various scope/sort options:

NULL:

All logins in name order (default)

"PASSWORD":
All logins in password date order

PREFIX:

All logins like PREFIX% in name order

"ROLES":

Only logins with user roles in login/role name order

"STATUS":
All logins with locked/expired/bad accounts

"USAGE":

All logins in CPU and I/O usage order

loginwhere
Lists all databases where LOGIN is a user

me
Displays contextual user identification

members
Lists all members of a GROUP/ROLE or (default) all groups and roles

new
Lists objects newer than DAYS (default is 4) days

objectagg
Displays object type aggregates (options: LOGIN or "BYUSER")

objectsunique
Checks for existence of duplicate names

oldxacts
Lists oldest transaction info by database

ownedby
Displays all objects owned by USER

If DROP_FLAG is non-null output will drop all USER.object

parameters
Lists parameters for PROCEDURE or (default) all procedures

procs
Lists stored procedures with various scope/sort options:

(NULL):

all stored procedures in name order (default)

“ANY”:

only any mode stored procedures in name order

“CHAINED”:
only chained mode stored procedures in name order

“DATE”:

all stored procedures in date order

PREFIX:

only stored procedures like PREFIX% in name

order

“RECOMPILE”:
only stored procedures with recompile option in

name order

“UNCHAINED”:
only unchained mode stored procedures in name

order

"XP":

only extended stored procedures in name order

readonly
Lists all user tables which are read only

refkeys
Lists internal referential keys for TABLE or (default) all tables

refkeysright
Checks for invalid referential keys

refkeysx
Lists external referential keys for TABLE or (default) all tables

remotelogins
Lists remote servers and users (option: REMOTE_SERVER)

removelogin
Removes a LOGIN from all databases and the server

remoteservers
Lists status of all local and remote servers

roles
Lists all local roles and groups with aggregate data

rolesright
Checks for potential role configuration management problems

roletree
Displays role membership tree for ROLE

roletrees
sp_roletree for all non-trivial highest level user roles

rules
Lists rules with various scope/sort options:

(NULL):
all rules in name order (default)

"DATE”:
all rules in date order

TABLE:
only rules for columns in TABLE

ruleuse
Lists all columns using RULE or (default) any rule

segmentdetail
Lists threshold, device, and object info for SEGMENT

default SEGMENT is “logsegment”

segments
Lists all segments with aggregate and device info

showtable
Lists column names and types for TABLE/VIEW

showtables
sp_showtable for all tables/views with following qualifiers:

(NULL):
all user tables and views

PREFIX:
only tables/views like "PREFIX%"

“S”:
System tables only

“U”:
User tables only (default)

“V”:
Views only

size
Displays size data of a TABLE or EXECUTEABLE

sizes
Lists size data for tables with #pages > SIZE

spacebyuser
Lists aggregate object space by user

status
Lists processes for DATABASE/USER or (default) everyone

sybprocs
Lists Sybase utility procedures for TOPIC in name order

sysprocs
Lists utility procedures for "root" (default) or for TOPIC.

sysprocs_DBA
Lists utility procedures mostly used by the DBA

sysprocs_group
Lists utility procedures concerning Groups/Members/Roles

sysprocs_index
Lists utility procedures concerning Indexes

sysprocs_monitor
Lists utility procedures concerning Performance Monitoring

sysprocs_object
Lists utility procedures concerning Objects

sysprocs_protect
Lists utility procedures concerning Permissions

sysprocs_system
Lists utility procedures concerning System Interactions

sysprocs_xref
Lists utility procedures concerning Object details/interactions

sysroles
Lists all system roles with various scope options:

(NULL):

all system roles with their logins (default)

LOGIN:

all system roles for LOGIN

SYSTEM ROLE:
all logins with SYSTEM ROLE role

tableinfo
All utility info for TABLE

tablesx
Lists user tables with space data with several options:

(NULL):
all user tables in table name order (default)

“DATE”:
all user tables in creation date order

“OWNER”:
all user tables in user/table name order

"PAGES":
all user tables in number of data pages order

PREFIX:
only user tables like PREFIX% in table name order

“ROWS”:
all user tables in number of rows order

"WIDTH”:
all user tables in table width order

SORT FLAG:
secondary option for descending sorts

textreindex
Generates SQL to reindex user tables with optional FILLFACTOR

textselectivity
Generates SQL to report index selectivities

thaprint
Threshold Action Stored Procedure (print only)

thatruncate
Threshold Action Stored Procedure (dump with truncate_only)

tree
Displays execute tree for STORED PROCEDURE

trees
sp_tree for all non-trivial highest level stored procedures

triggers
Lists triggers with various scope/sort options:

(NULL):
all triggers in table name order (default)

“DATE”:
all triggers in date order

TABLE:
only triggers for TABLE

typeagg
Displays column type aggregates for user tables

units
Prints NUMBER in equivalent GB, MB, Page, and KB units

unused
Checks for unused objects (with multiple options)

(NULL):

Maximum checking

"PB":

PowerBuilder tables not checked (default)

"SR":

Subscription tables/views not checked (default)

“SYS”:

System tables not checked (default)

“USERTBL”:
User tables not checked

“VIEW”:

Views not checked

userroles
Lists info for all user roles (default) or for USER ROLE.

users
Lists users with various scope/sort options:

(NULL):
all users in name order (default)

"ALIAS":
all users with an alias or pseudonym

PREFIX:
all users/logins like PREFIX% in user/login name order

“ROLES”:
all users that have user roles

usertypes
Lists all user defined types with their attributes

uses
Lists procs/tables/views used by PROC/TRIGGER/VIEW

usesright
Checks for objects with invalid/newer base objects

version
Displays current date, SQL Server name, and SQL Server version

views
Lists all views with several options:

(NULL): all views in name order

"DATE": all views in date order

"SIZE": all views in size order

PREFIX: all views like "PREFIX%"

xactagg
Lists transaction log aggregates (option: DETAIL_FLAG)

Appendix C

Installation Guide

Approximately 10,000 pages will be consumed by these stored procedures in sybsystemprocs. Approximately 3,500 allocated pages can be freed if the syscomments and sysprocedures tables are re-indexed afterwards.

The basic installation mechanism is PC isql; there is no source code version for UNIX. It may be possible to use other front-end software such as wisql. It is very doubtful that defncopy can be used unless the SQL script files are modified.

Upgrades can be selective. Refer to Appendix D to see which upgrades you may want to restrict yourself to. Note that some procedures may no longer exist and “drop procedure” statements for them will be in the new script files. If you wish to keep discarded procedures you should keep the source code from previous releases separately.

Although these procedures do not have any common names with the Sybase-provided procedures some administrators may prefer to rename these with a leading “sp__”, “sp_sa”, etc. instead of “sp_”. Each file can be edited with (1) change “sp_” to “<whatever>”, and (2) change “<whatever> procxmode” to “sp_procxmode”. For comment.sql there will be the additional change “<whatever>configure” to “sp_configure”. You will have to be consistent with “<whatever>” for all of the script files.

There may be procedures that are of no interest to you. It is probably easiest to have a separate “drop procedure” script file that is run after you upgrade. Sp_sysprocs (see IntroUtl.doc) will list only procedures that are in both udescriptions and sysobjects in the sybsystemprocs database. You do not have to eliminate non-existent stored procedures from the first table in order to make sp_sysprocs reliable.

Most of the utility stored procedures that have a “pancake structure” have been decomposed into a driver procedure with multiple subroutines. Sp_datatype, sp_logins, and sp_users are obvious examples. This is of benefit for systems with a relatively small procedure cache. The cost of an additional loading of a small procedure is probably cheaper than loading in a large procedure most of which will not be executed. However this does make it more difficult to maintain an SQL “drop procedure” script.

Install the following four files in the listed order.

sptval.sql:
This will create a subset copy of master.dbo.spt_values as

sybsystemprocs.dbo.usptvalues. (Dependencies can be referenced here.

Dependencies for the spt_values table cannot be done since most of the

procedures are not in master.)

utables.sql:
This will create several utility tables in sybsystemprocs and will insert rows into the utility tables.

comment.sql:
This must be run by a System Administrator. It will temporarily set “allow

updates”. It requires that utables.sql be run first.

utility.sql

Next install the following files in (almost) any order.

cst.sql (Must be run by a System Administrator in order to load updt_master_stats.)

dba.sql

describe.sql (sp_sybprocs installation will fail if the sybsyntax database doesn't exist)

group.sql

index.sql (Modify @exclude1/2/3 in sp_indexes and sp_indexnames if appropriate)

master.sql

object.sql (Modify @exclude1/2/3 in sp_tablesx and sp_views if appropriate)

protect.sql

right.sql

size.sql

sptext.sql

system.sql

tree.sql

xref.sql

driver.sql (load last or next to last)

grant.sql (optional)

The stored procedures in driver.sql execute stored procedures defined in the previous files. If appropriate, modify grant.sql and run it. The upgrade.sql file is available for system administrator use and does not need any modifications.

The evaluate.sql file is available for executing many of the stored procedures with directed input and output in order to evaluate the usefulness of these stored procedures. Most of the procedures in this file do not have an argument. You should modify line one so that it uses an interesting database.

Appendix D

Release Changes from 1151B (October 13, 1999)

File
Stored Procedure
Change

cst
checksystables
Added conditional execution of stored procedure

master.dbo.updt_master_stats.

updt_master_stats
Added stored procedure to master database. (No

leading “sp_”.)

describe
sysprocsdetail
Added a better message when a group (versus "topic")

has no stored procedures.
dba
freespace
Added execution of sp_date to beginning of

procedure.

lastxact
Added substring of usptvalues.txt since that column

has been widened.

new
Added display of new logins when run from master

database.

index
checkindexes
Added update statistics commands.

indexchoices
Added a check for section (4) listed on page 18.

Changed structure of table #indexes to be consistent

with subroutines sp_indexes_format and

sp_indexes_printall.

indexes, indexnames
Changed @TABLE to @PREFIX and modified logic

to list tables like @PREFIX%. Added exclusion of

certain tables. Modified logic to print all keys when

indexes only exist for one table.

indexes_format,
Added seq column to #indexes for displaying all keys

indexes_printall,
of an index on multiple lines.

indexes_printttbl

sysindexes
Removed stored procedure since sp_indexes has

become more flexible.

master
db
Added listing of database names like

@DATABASE% if @DATABASE does not exist.

users
Added update statistics commands. Eliminated "user

list" option.

users_like, users_roles
Added recompile option.

users_list
Removed stored procedure subroutine.

object
tablesx
Changed @TABLE to @PREFIX and modified logic

to list tables like @PREFIX%. Added exclusion of

certain tables.

usertypes
Replaced NULL column by appending an asterisk

when the usertype is nullable. Widened other

columns.

views
Modified logic to list tables like @PREFIX%. Added

exclusion of certain tables.

protect
grants, grantsme,
Added update statistics commands.

grantsuser

grantsobjdetail,
Added recompile option.

grantsuserdetail

grantsagg
Changed “g.columns” to “isnull (g.columns, 0x01)”

to delete statement when “541” rows exist. (Problem

is that sysprotects.columns is “0x01” for table-level

references/select/update protections and NULL for

delete/insert protections.)

right
domainsright
Added update statistics commands.

sptext
textreindex
Improved memory efficiency by having all index

creations done per table. See description on page 23.

system
alllocks
Reduced LOCK TYPE length from 38 to 37 to keep

within 78 character width.

tree
backexecall, trees
Added update statistics commands.

usptvalues
-
Widened txt field to char (78). Modified XRI text for

sp_textreindex.

utility
add, excld_prnt
Added stored procedures.

me
Added display of @@spid value.

xref
checks
Corrected text length check by eliminating “+ 2”

when @TABLE is NULL.

dbdiff, dbdiff_load,
Several changes and enhancements that are listed on

dbdiff_print
page 13.

defaultcols
Added blanking out of default groups.

loginwhere
Added logic to handle the parameter value of "guest".

ownedby
Corrected “drop stored procedure” to “drop

procedure” when @DROP_FLAG is non-NULL.

Reset class column to 1 for triggers so that triggers

are dropped before tables. Added logic for listing

databases for non-users in master.

refkeys
Added column fkeysort and changed the order by

clause to correctly display tables with multiple

foreign keys and one or more corresponding long

primary key columns. Added an informatory message

if there are duplicate foreign key constraints.

typeagg
Added asterisk suffix to NULL datatypes and made

the column wider. Eliminated "NULL?" column.

unused
Lengthened off_string values from char (1) to longer

values. Added logic and parameters for eliminating

PowerBuilder and subscription objects.

PAGE
39

