

Another Kind Of Surrogate Primary Key

by Matt Townsend, Northern Lights Software, Ltd.

Background: A recent application requirement

dictated that the transaction processor host would

assign a unique transaction,' number when a valid credit

card transaction was received. Thus, we could generate

a unique number each time a valid ledger item entered

the system. This was a rare opportunity to model a

surrogate identifier at the conceptual level.

Unfortunately, many of the implementation choices

failed. This note describes the physical solution that

seems to, under volume testing, provide an

implementation that works around problems outlined

by Meyerl. Our volume test includes transactions sent

to the Sybase Server (System 11) from 10 client

processes and over a 10 minute period.

Issues: For control, the operation that generates the

surrogate and inserts new data into the ledger table is

encapsulated in a stored procedure. We also had a

target performance goal of 1000 transactions per

minute, measured from socket-in to socket�out. The

transaction's data was to be inserted into 8 tables

although the experiments discussed herein involved

just one table. Finally, since the basic architecture was

to be identically deployed to many locations.

management of the key over time was an issue. Meyer

discusses several approaches.

'Max plus l' could not guarantee uniqueness because

it is not atomic. Since Several processes were accessing

the same procedure the possibility, over time, that

more than one was requesting a 'max+l' from the

table (shared lock) was likely and did happen The

result was a Server 'duplicate' error to the Client

application and a requirement to handle it. Retries did

not completely solve the problem and degraded

performance la unacceptable levels.

‘Enhanced Max plus l' involved putting the

'holdlock' keyword onto the above ‘max+ 1' select

statement. The result yielded a huge amount of'

deadlock errors caused by the processes, the. inserts,

and the held select vying for the same resource. T he

 usual deadlock retry handlers degraded performance

 dramatically.

 We rejected the 'Next key table' approach based on

 experience. Under stress conditions a large amount of

 blocking can occur with this approach. We did not

 believe that we could have blocking and still achieve

 the required performance.

 Sybase' identity column seemed too difficult to

 manage over a large amount of installations.

 Additionally, during development, performance

 tuning, and stress testing where resetting Conditions

 are important for consistency of results, the ability to

 clear and reset the identity column can become an

 onerous task

 Solution: Guaranteed monotonic sequences is a way

 to assure uniqueness. An example would be a

 serialized time sequence. This time sequence works if

 the precision is deep enough for the application.

 Using Sybase' CONVERT function to get the system

 date to display one millisecond increments is a

 candidate implementation. Unfortunately Sybase does

 not support conversion of datetime to a numeric

 datatype. We get around this problem by converting

twice

 CONVERT(numeric(17,0),CONVERT(binary,getdate(),9))

yielding a number with a desired precision. We could

use this as a credible surrogate but for the possibility

of two processes getting the same number (as in the

‘max+l' approach.) This problem was solved by

using the server process id to 'scope' the surrogate.

This Assures uniqueness by identifying the requesting

process with the generated number. This is

accomplished by prefixing the global variable

@@spid to the number

(@@spid*lx1018)+CONVERT(numeric(17,0),CONVERT(binary, getdate(),9))

yielding (for up to 999 users) a numeric(21,0) result.

We can use this for a unique identifier in the Ledger

Item tables. This generator was tested with 10

transaction processes over a period of 10 or more

minutes in each test. We found no locking, deadlock,

or blocking problems using this technique and

concluded we could now tune the application without

this as a performance issue.

1. How Surrogate Primary Key Generation Affects

Concurrency and the Cache Hit Ratio'. by Gary

Meyer. Presented at the 1994 International

Sybase User Meetlng See

http://ftp.netcom,com/pub/me/meyer/94keys.html

